Abstract
Objectives
Methods
Results
Conclusions
Abbreviations:
AI (artificial intelligence), AUC (area under the curve), COVID-19 (Coronavirus disease 2019), CT (Computed tomography), CXR (Chest X-Ray), CNN (Convolutional neural network), CRP (C-reactive protein), SARS (severe acute respiratory syndrome), SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), GGO (ground-glass opacities), KNN (K-nearest neighbor), LASSO (least absolute shrinkage and selection operator), ML (machine learning), MEERS-COV (Middle East respiratory syndrome coronavirus), PLR (positive likelihood ratio), PLR (negative likelihood ratio), RT-PCR (Reverse transcriptase polymerase chain reaction), ROI (regions of interest), SROC (summary receiver operating characteristic), SVM (Support vector machine), 2D (two-dimensional), 3D (three-dimensional)Keywords
1. Introduction
- Islam N.
- Ebrahimzadeh S.
- Salameh J.P.
- Kazi S.
- Fabiano N.
- Treanor L.
- Absi M.
- Hallgrimson Z.
- Leeflang M.M.
- Hooft L.
- van der Pol C.B.
- Prager R.
- Hare S.S.
- Dennie C.
- Spijker R.
- Deeks J.J.
- Dinnes J.
- Jenniskens K.
- Korevaar D.A.
- Cohen J.F.
- Van den Bruel A.
- Takwoingi Y.
- van de Wijgert J.
- Damen J.A.
- Wang J.
- McInnes M.D.
2. Materials and methods
P.M. Bossuyt, J.B. Reitsma, D.E. Bruns, C.A. Gatsonis, P.P. Glasziou, L. Irwig, J.G. Lijmer, D. Moher, D. Rennie, H.C. de Vet, H.Y. Kressel, N. Rifai, R.M. Golub, D.G. Altman, L. Hooft, D.A. Korevaar, J.F. Cohen, STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies, BMJ (Clinical research ed.) 351 (2015) h5527.
- McInnes M.D.F.
- Moher D.
- Thombs B.D.
- McGrath T.A.
- Bossuyt P.M.
- Clifford T.
- Cohen J.F.
- Deeks J.J.
- Gatsonis C.
- Hooft L.
- Hunt H.A.
- Hyde C.J.
- Korevaar D.A.
- Leeflang M.M.G.
- Macaskill P.
- Reitsma J.B.
- Rodin R.
- Rutjes A.W.S.
- Salameh J.P.
- Stevens A.
- Takwoingi Y.
- Tonelli M.
- Weeks L.
- Whiting P.
- Willis B.H.
2.1 Search strategy
2.2 Eligibility criteria
2.3 Data extraction
2.4 Quality assessment
- Lambin P.
- Leijenaar R.T.H.
- Deist T.M.
- Peerlings J.
- de Jong E.E.C.
- van Timmeren J.
- Sanduleanu S.
- Larue R.
- Even A.J.G.
- Jochems A.
- van Wijk Y.
- Woodruff H.
- van Soest J.
- Lustberg T.
- Roelofs E.
- van Elmpt W.
- Dekker A.
- Mottaghy F.M.
- Wildberger J.E.
- Walsh S.
2.5 Statistical analysis
- Jaeschke R.
- Guyatt G.H.
- Sackett D.L.
- Guyatt G.
- Bass E.
- Brill-Edwards P.
- Browman G.
- Cook D.
- Farkouh M.
- Gerstein H.J.J.
3. Results
3.1 Literature search

Training validation/ Testing | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study ID | Country of corresponding author | Study type | Index test | Date source | Eligibility criteria | Reference standard | Common type of pneumonia | Number of COVID-19 vs. other pneumonias | AUC | Type of validation | Number of COVID-19 vs. other pneumonias | SEN | SPC |
Ardakani 2020 | Iran | R | CT | Single hospital | Yes | RT-PCR | Atypical, viral pneumonia | 86 vs. 69 | 0.999 | Random split | 22 vs.17 | 1.00 | 0.99 |
Ardakani 2021 | Iran | R | CT | Single hospital | Yes | RT-PCR | Atypical and viral pneumonia | 244 vs.244 | 0.988 | Random split | 62 vs.62 | 0.935 | 0.903 |
Ali 2021 | turkey | R | CXR | Single database | No | NA | Viral pneumonia | 146 vs.901 | NR | 3fold CV | 73 vs.444 | 0.973 | NR |
Han2021 | Korea | R | CT | 2datasets | No | NA | Viral pneumonia, bacterial pneumonia, fungal pneumonia | 164 vs.320 | NR | External validation | 21 vs.40 | 0.997 | 0.959 |
Di2020 | China | R | CT | 5hospitals | No | RT-PCR | CAP | 1933 vs. 1064 | NR | 10 fold CV | 215 vs.118 | 0.932 | 0.840 |
Bai 2020 | China | R | CT | 10hospitals | Yes | RT-PCR | Pneumonia of other origin | 377 vs.453 | NR | Random split | 42 vs.77 | 0.950 | 0.960 |
Panwar 2020 | Mexico | R | CXR | 3datasets | No | NA | Pneumonia | 133 vs.231 | NR | Random split | 29 vs.85 | 0.966 | 0.953 |
Kang 2020 | China | R | CT | 3hospitals | No | RT-PCR | CAP | 1046 vs. 719 | NR | Random split | 449 vs.308 | 0.966 | 0.932 |
Liu 2021 | China | R | CT | 2hospitals | Yes | RT-PCR | Viral infections, mycoplasma infections, chlamydia infections, fungus infections, co-infections | 66 vs.313 | 1.000 | External validation | 20 vs.20 | 0.850 | 0.900 |
Chen 2021 | China | R | CT | Single hospital | Yes | RT-PCR | Other types of pneumonia | 54 vs.60 | 0.984 | Random split | 9 vs.11 | 0.816 | 0.923 |
Song 2020 | China | R | CT | 2hospitals | Yes | RT-PCR | CAP | 66 vs.66 | 0.979 | External validation | 15 vs.20 | 0.800 | 0.750 |
Sun 2020 | China | R | CT | 6hospitals | No | RT-PCR | CAP | 1196 vs. 822 | NR | 5fold CV | 299 vs.205 | 0.931 | 0.899 |
Wang 2021 | China | R | CT | 3hospitals | Yes | RT-PCR | Other types of viral pneumonia | 74 vs.73 | 0.970 | External validation | 17 vs.17 | 0.722 | 0.751 |
Zhou 2021 | China | R | CT | 12hospitals | Yes | RT-PCR | Influenza pneumonia | 118 vs.157 | NR | External validation | 57 vs.50 | 0.860 | 0.772 |
Azouji2021 | Switzerland | R | CXR | 7datasets | No | NA | MERS, SARS | 338 vs.222 | NR | 5fold CV | 85 vs.56 | 0.989 | NR |
Cardobi 2021 | Italy | R | CT | Single hospital | No | swab test | Interstitial pneumonias | 54 vs.30 | 0.830 | Random split | 14 vs.17 | 0.570 | 0.930 |
Yang 2021 | China | R | CT | Single hospital | No | RT-PCR | Other pneumonias | 70 vs.70 | NR | 10fold CV | 20 vs.20 | 0.942 | 0.854 |
Chikontwe 2021 | Korea | R | CT | Single hospital | No | RT-PCR | Bacterial pneumonia | 38 vs.49 | NR | Random split | 30 vs.39 | 1.000 | 0.975 |
Zhu 2021 | China | R | CT | 6hospitals | No | RT-PCR | CAP | 1345 vs. 924 | NR | 10fold CV | 150 vs.103 | 0.913 | 0.910 |
Xie 2020 | China | R | CT | 5hospitals | Yes | RT-PCR | Bacterial infection, Viral infection | 227 vs.153 | NR | prospective RWD | 243 vs.73 | 0.810 | 0.820 |
Qi 2021 | China | R | CT | 3hospitals+dataset | Yes | RT-PCR | CAP | 127 vs.90 | NR | 10fold CV | 14 vs.10 | 0.972 | 0.940 |
Wang 2020 | China | R | CT | 7hospitals | Yes | RT-PCR | Bacterial pneumonia, Mycoplasma pneumonia, Viral pneumonia, Fungal pneumonia | 560 vs.149 | 0.900 | External validation | 102 vs.124 | 0.804 | 0.766 |
Yang 2020 | China | R | CT | 8hospitals | No | RT-PCR | CAP | 960 vs.628 | 0.976 | External validation | 1605 vs. 452 | 0.869 | 0.901 |
Wu 2020 | China | R | CT | 3hospitals | No | RT-PCR | Other pneumonia | 294 vs.101 | 0.767 | Random split | 37 vs.13 | 0.811 | 0.615 |
Zhang 2021 | China | R | CT | 3hospitals | No | RT-PCR | CAP, influenza, mycoplasma pneumonia | 72 vs.127 | 0.987 | 5fold CV | 31 vs.62 | 0.879 | 0.887 |
Xin 2021 | China | R | CT | 2hospitals | Yes | swab tests | CAP | 34 vs.48 | NR | 5fold CV | 9 vs.12 | 0.957 | 0.984 |
Guo 2020 | China | R | CT | 2hospitals | No | RT-PCR | Seasonal flu,CAP | 8 vs.42 | 0.970 | External validation | 11 vs.44 | 0.889 | 0.935 |
Fang2020 | China | R | CT | 2hospitals | Yes | nucleic acid detection | Viral pneumonia | 136 vs.103 | 0.959 | Random split | 56 vs.34 | 0.929 | 0.971 |
Xia 2021 | China | R | CXR | 2hospitals | Yes | nucleic acid | Influenza A/B pneumonia | 246 vs.44 | NR | Random split | 266 vs.62 | 0.869 | 0.742 |
Huang2020 | China | R | CT | 15hospitals | Yes | RT-PCR | Viral pneumonia | 62 vs.64 | 0.849 | 5fold CV | 27 vs.28 | 0.778 | 0.786 |
Wu 2021 | China | R | CT | Single hospital | Yes | nucleic acid | Other infectious pneumonia | 76 vs.77 | NR | 5fold CV | 19 vs.19 | 0.809 | 0.842 |
Chen2021 | China | R | CT | 2hospitals | No | RT-PCR | Viral pneumonia | 81 vs.81 | 0.807 | Random split | 27 vs.19 | 0.733 | 0.822 |
Study ID | ROI | Segmentation Style | AI Method | Labeling Procedure | Pre-Processing | Augmentations | Model Structure | Loss Function | Comparison between algorithms | AI vs. Radiologist |
---|---|---|---|---|---|---|---|---|---|---|
Ardakani 2020 | Regions of infections | 2D | DL | by a radiologist with more than 15 years of experience in thoracic imaging | Manual ROI extraction by cropping, Normalization, transfer-learning | NA | Ten well-known CNN | NA | Ten well-known CNN | Yes |
Ardakani 2021 | CT chest | 2D | ML | By two radiologists | feature extraction | random scaling shearing horizontal flip | ensemble method | NA | DT, KNN, Naïve Bayes, SVM | Yes |
Ali 2021 | Whole image | 2D | DL | NA | Normalization, transfer-learning | Horizontal, vertical flip, Zoom, Shift | ResNet50, ResNet101, Res Net 152 | NA | ResNet50, ResNet101, Res Net 152 | No |
Han2021 | CT slices | 2D | DL | using the labeled COVID-19 dataset | both labeled and unlabeled data can be used | random scaling random translation, random shearing, horizontal flip | a semi-supervised deep neural network | standard cross entropy loss | Supervised learning | No |
Di2020 | Infected lesions | 2D | ML | NA | extracted both regional and radiomics features, Segmentation | NA | UVHL | cross- entropy | SVM, MLP, iHL, tHL | No |
Bai 2020 | Lung regions | 2D | DL | Lesions (COVID-19 or pneumo- nia) were manually labeled by2 radiologists | Normalized, Segmentation | flips, scaling, rotations, random brightness and contrast manipulations, random noise, and blurring | DNN | NA | No | Yes |
Panwar 2020 | Whole image | 2D | DL | NA | Filter, dimension reduction, deep transfer learning | Shear, Rotation Zoom, shift | A DL and Grad-CAM | binary cross-entropy loss | No | No |
Kang 2020 | Lesion region | 3D | ML | NA | Segmentation, Feature Extraction, Normalization | NA | Structured Latent Multi-View Representation Learning | Ross-entropy loss | LR,SVM,GNB, KNN, NN | No |
Liu 2021 | Each pneumonia lesion | 3D | ML | By three experienced radiologists | Feature Extraction, Filters | NA | LASSO regression | NA | No | Yes |
Chen 2021 | Consolidation and ground- glass opacity lesions | 3D | ML | By fifteen radiologists | Feature Extraction, wavelet filters, Laplacian of Gaussian filters, Feature selection | NA | SVM | NA | No | No |
Song 2020 | CT images | 2D | DL | NA | semantic feature extraction | NA | BigBiGAN | NA | SVM, KNN | Yes |
Sun 2020 | Infected lung regions | 3D | DL | NA | Feature extraction | NA | AFS-DF | NA | LR, SVM, RF, NN | No |
Wang 2021 | Pneumonia lesions | 3D/2D | ML | By four radiologists | manual segmentation, Feature extraction | NA | Linear, LASSO, RF, KNN | NA | Linear, LASSO, RF, KNN | Yes |
Zhou 2021 | Lesion regions | 2D | DL | annotated by 2 radiologists | Segmentation | randomly flipped, cropped | Trinary scheme(DL) | Binary cross- entropy loss | Plain scheme(DL) | Yes |
Azouji2021 | X-ray images | 2D | DL | NA | Resizing x-ray images, Contrast limited adaptive histogram equalization, Deep feature extraction, Deep feature fusion | Rotation, translation | LMPL classifier | hinge loss function | NaiveBayes, KNN, SVM,DT, AdaBoostM2, TotalBoost,RF, SoftMax,VGG-Net | No |
Cardobi 2021 | Lung area | 3D | ML | NA | Segmentation, features extraction | NA | LASSO model | NA | No | No |
Yang 2021 | Pneumonia lesion | 3D | ML | artificially delineated | Segmentation, features extraction | spatially resampled | SVM | NA | Sigmoid-SVM, Poly-SVM, Linear-SVM, RBF-SVM | No |
Chikontwe 2021 | CT slices | 3D | DL | NA | Segmentation | random transformations, flipping | DA-CMIL | NA | DeCoVNet, MIL, DeepAttentionMIL, JointMIL | No |
Zhu 2021 | CT images | 3D | DL | NA | Segmentation, features extraction | NA | GACDN | Binary cross entropy | SVM,KNN,NN | No |
Xie 2020 | CT slices | 3D | DL | NA | Segmentation, extract 2D local features and 3D global features | random horizontal flip, random rotation, random scale, random translation, and random elastic transformation | DNN | NA | No | Yes |
Qi 2021 | Lung field | 3D | DL | NA | segmentation of the lung field, Extraction of deep features, Feature representation | Image rotation, reflection, and translation | DR-MIL | NA | MResNet-50-MIL, MmedicalNet, MResNet-50-MIL-max-pooling, MResNet-50-MIL-Noisy-AND-pooling, MResNet-50-Voting, MResNet-50-Montages | Yes |
Wang 2020 | Lung area | 3D | DL | NA | fully automatic DL model to segment, normalization, convolutional filter | NA | DL | NA | No | No |
Yang 2020 | Infection regions | 3D | DL | NA | Class Re-Sampling Strategies, Attention Mechanism | scaling | Dual-Sampling Attention Network | binary cross entropyloss | RN34 + US, Attention RN34 + US Attention RN34 + SS Attention RN34 + DS | No |
Wu 2020 | CT slices | 3D | DL | NA | segmentation | NA | Multi-view deep learning fusion model | NA | Single-view model | No |
Zhang 2021 | Major lesions | 3D | DL | NA | Segmentation Feature extraction, Feature selection, | scaling | DL-MLP | NA | DL-SVM,DL-LR, DL-XGBoost | Yes |
Xin 2021 | Lungs, lobes, and detected opacities | 2D | DL | Confirmed by 3 experienced radiologists and human auditing | Segmentation Feature extraction | NA | LR, MLP, SVM, XGboost | NA | LR, MLP, SVM, XGboost | No |
Guo 2020 | NR | NA | ML | by two radiologists | Segmentation Feature extraction | NA | RF | NA | No | No |
Fang2020 | Primary lesion | 3D/2D | ML | by two chest radiologists | Segmentation feature extraction, feature reduction and selection | NA | LASSO regression | NA | No | No |
Xia 2021 | Lung areas | 2D | DL | NA | Segmentation feature extraction | random rotation, scale, transmit | DNN | Categorical cross- entropy | No | Yes (pulmonary physicians) |
Huang2020 | Pneumonia lesion | 3D | ML | by two chest radiologists | Segmentation feature extraction, filter | NA | Logistic model | NA | No | No |
Wu 2021 | Maximal regions Involving inflammatory lesions | 2D | ML | by two radiologists | feature extraction, manually delineating | NA | RF | NA | No | No |
Chen2021 | Lesion region | 2D | ML | by two radiologists | Segmentation feature extraction,feature dimensionality reduction | NA | WSVM | NA | RF, SVM LASSO | Yes |
3.2 Risk of bias assessment
- Bai H.X.
- Wang R.
- Xiong Z.
- Hsieh B.
- Chang K.
- Halsey K.
- Tran T.M.L.
- Choi J.W.
- Wang D.C.
- Shi L.B.
- Mei J.
- Jiang X.L.
- Pan I.
- Zeng Q.H.
- Hu P.F.
- Li Y.H.
- Fu F.X.
- Huang R.Y.
- Sebro R.
- Yu Q.Z.
- Atalay M.K.
- Liao W.H.


3.3 Data analysis


3.4 Subgroup analysis
Subgroup | Number of study | Sensitivity (95 % CI) | I2 (%) | Specificity | I2 (%) | PLR | I2 (%) | NLR | I2 (%) | AUC |
---|---|---|---|---|---|---|---|---|---|---|
Imaging modality | ||||||||||
CRX | 4 | 0.91(0.88,0.94) | 85.6 | 0.96(0.95,0.98) | 95.3 | 26.04(3.73,181.94) | 93.3 | 0.04(0.00,0.41) | 92.6 | 0.9914 |
CT | 28 | 0.89(0.88,0.90) | 78.9 | 0.89(0.87,0.90) | 62.1 | 6.92(5.35,8.96) | 69.5 | 0.14(0.11,0.19) | 80.0 | 0.9427 |
Modeling methods | ||||||||||
Radiomic algorithm | 13 | 0.92(0.90,0.94) | 78.4 | 0.90(0.87,0.92) | 36.8 | 7.16(4.96,10.33) | 53.0 | 0.15(0.08,0.28) | 85.6 | 0.9446 |
Deep learning | 19 | 0.88(0.87,0.89) | 78.0 | 0.91(0.90,0.92) | 88.5 | 8.32(5.69,12.18) | 82.5 | 0.12(0.09,0.17) | 76.9 | 0.9702 |
sample size | ||||||||||
<100 | 18 | 0.87(0.83,0.90) | 65.4 | 0.89(0.86,0.92) | 47.8 | 6.50(4.42,9.58) | 49.3 | 0.18(0.12,0.28) | 59.0 | 0.9371 |
>100 | 14 | 0.89(0.88,0.90) | 87.0 | 0.91(0.90,0.92) | 90.8 | 8.81(6.02,12.89) | 86.2 | 0.10(0.07,0.14) | 88.6 | 0.9725 |
ROI | ||||||||||
Infection regions | 15 | 0.89(0.88,0.90) | 81.0 | 0.89(0.88,0.91) | 48.8 | 6.89(5.20,9.12) | 58.0 | 0.14(0.09,0.20) | 81.3 | 0.9409 |
others | 16 | 0.88(0.86,0.90) | 80.4 | 0.92(0.90,0.94) | 89.5 | 9.33(5.64,15.45) | 83.3 | 0.11(0.07,0.19) | 83.2 | 0.9691 |
segmentation | ||||||||||
2D | 14 | 0.91(0.89,0.93) | 71.6 | 0.93(0.91,0.95) | 88.9 | 9.71(5.78,16.33) | 79.3 | 0.10(0.06,0.17) | 77.3 | 0.9740 |
3D | 15 | 0.88(0.87,0.90) | 85.1 | 0.89(0.87,0.90) | 64.8 | 6.77(4.79,9.57) | 76.6 | 0.15(0.10,0.22) | 85.9 | 0.9386 |
3.5 Publication bias

4. Discussion
- Bai H.X.
- Wang R.
- Xiong Z.
- Hsieh B.
- Chang K.
- Halsey K.
- Tran T.M.L.
- Choi J.W.
- Wang D.C.
- Shi L.B.
- Mei J.
- Jiang X.L.
- Pan I.
- Zeng Q.H.
- Hu P.F.
- Li Y.H.
- Fu F.X.
- Huang R.Y.
- Sebro R.
- Yu Q.Z.
- Atalay M.K.
- Liao W.H.
- Lambin P.
- Leijenaar R.T.H.
- Deist T.M.
- Peerlings J.
- de Jong E.E.C.
- van Timmeren J.
- Sanduleanu S.
- Larue R.
- Even A.J.G.
- Jochems A.
- van Wijk Y.
- Woodruff H.
- van Soest J.
- Lustberg T.
- Roelofs E.
- van Elmpt W.
- Dekker A.
- Mottaghy F.M.
- Wildberger J.E.
- Walsh S.
- Suri J.S.
- Agarwal S.
- Gupta S.K.
- Puvvula A.
- Biswas M.
- Saba L.
- Bit A.
- Tandel G.S.
- Agarwal M.
- Patrick A.
- Faa G.
- Singh I.M.
- Oberleitner R.
- Turk M.
- Chadha P.S.
- Johri A.M.
- Miguel Sanches J.
- Khanna N.N.
- Viskovic K.
- Mavrogeni S.
- Laird J.R.
- Pareek G.
- Miner M.
- Sobel D.W.
- Balestrieri A.
- Sfikakis P.P.
- Tsoulfas G.
- Protogerou A.
- Misra D.P.
- Agarwal V.
- Kitas G.D.
- Ahluwalia P.
- Teji J.
- Al-Maini M.
- Dhanjil S.K.
- Sockalingam M.
- Saxena A.
- Nicolaides A.
- Sharma A.
- Rathore V.
- Ajuluchukwu J.N.A.
- Fatemi M.
- Alizad A.
- Viswanathan V.
- Krishnan P.K.
- Naidu S.
Ethical statement
Funding
Declaration of Competing Interest
Appendix A. Supplementary material
Supplementary material
References
- World Health Organization. https://covid19.who.int/
T.P. Velavan, C.G.J.Tm Meyer, i. health, The COVID‐19 epidemic, 25(3) (2020) 278.
- Characteristics of SARS-CoV-2 and COVID-19.N.R.M. 2021; 19: 141-154
- Diagnostics for SARS-CoV-2 infections.Nat. Mater. 2021; 20: 593-605
- Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID‐19.Cochrane Database Syst. Rev. 2022; 5
K. McIntosh , S.J.M. Perlman , Douglas , b.s . principles, p.o.i. diseases, Coronaviruses, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), (2015) 1928.
- Negative nasopharyngeal and oropharyngeal swabs do not rule out COVID-19.J. Clin. Microbiol. 2020; 58
- A patient with COVID-19 presenting a false-negative reverse transcriptase polymerase chain reaction result.Korean J. Radiol. 2020; 21: 623-624
- Interpreting diagnostic tests for SARS-CoV-2.JAMA. 2020; 323: 2249-2251
- Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia.Radiology. 2020; 295
D. Caruso, M. Zerunian, M. Polici, F. Pucciarelli, T. Polidori, C. Rucci, G. Guido, B. Bracci, C. De Dominicis, A.J.R. Laghi, Chest CT features of COVID-19 in Rome, Italy, (2020).
T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L.J.R. Xia, Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases, (2020).
- Human coronavirus infections—severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and SARS-CoV-2.Encycl. Respir. Med. 2022; 2: 146
- Radiology perspective of coronavirus disease 2019 (COVID-19): lessons from severe acute respiratory syndrome and middle east respiratory syndrome.AJR Am. J. Roentgenol. 2020; 214: 1078-1082
- Thoracic imaging tests for the diagnosis of COVID-19, The.Cochrane Database Syst. Rev. 2021; 3: Cd013639
- Radiomics: images are more than pictures, they are data.Radiology. 2016; 278 (563-77)
P.M. Bossuyt, J.B. Reitsma, D.E. Bruns, C.A. Gatsonis, P.P. Glasziou, L. Irwig, J.G. Lijmer, D. Moher, D. Rennie, H.C. de Vet, H.Y. Kressel, N. Rifai, R.M. Golub, D.G. Altman, L. Hooft, D.A. Korevaar, J.F. Cohen, STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies, BMJ (Clinical research ed.) 351 (2015) h5527.
- Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA statement.JAMA. 2018; 319: 388-396
- Radiomics: the bridge between medical imaging and personalized medicine.Nat. Rev. Clin. Oncol. 2017; 14: 749-762
- Checklist for artificial intelligence in medical imaging (CLAIM): a guide for authors and reviewers.Radiol. Artif. Intell. 2020; 2
- QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.Ann. Intern. Med. 2011; 155 (529-36)
- Users' guides to the medical literature: III. How to use an article about a diagnostic test B. What are the results and will they help me in caring for my patients?.JAMA. 1994; 271: 703-707
J.B. Reitsma, A.S. Glas, A.W. Rutjes, R.J. Scholten, P.M. Bossuyt, A.H.J.Joce. Zwinderman, Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews, 58(10) (2005) 982–990.
W.A. van Enst, E. Ochodo, R.J. Scholten, L. Hooft, M.M.J.Bmrm. Leeflang, Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study, 14(1) (2014) 1–11.
S. Qi, C. Xu, C. Li, B. Tian, S. Xia, J. Ren, L. Yang, H. Wang, H.J.Cm Yu, p.i. biomedicine, DR-MIL: deep represented multiple instance learning distinguishes COVID-19 from community-acquired pneumonia in CT images, 211 (2021) 106406.
A. Narin, Y.J.JotFo.E.. Isler, A.o.G. University, Detection of new coronavirus disease from chest x-ray images using pre-trained convolutional neural networks, 36(4) (2021) 2095–2107.
- Semi-supervised learning for an improved diagnosis of COVID-19 in CT images.PLoS One. 2021; 16e0249450
H. Panwar, P. Gupta, M.K. Siddiqui, R. Morales-Menendez, P. Bhardwaj, V.J.C. Singh, Solitons, Fractals, A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images, 140 (2020) 110190.
N. Azouji, A. Sami, M. Taheri, H.J.Ci.B. Müller, Medicine, A large margin piecewise linear classifier with fusion of deep features in the diagnosis of COVID-19, 139 (2021) 104927.
L. Wang, B. Kelly, E.H. Lee, H. Wang, J. Zheng, W. Zhang, S. Halabi, J. Liu, Y. Tian, B.J.Ejor. Han, Multi-classifier-based identification of COVID-19 from chest computed tomography using generalizable and interpretable radiomics features, 136 (2021) 109552.
X. Fang, X. Li, Y. Bian, X. Ji, J.J.Er Lu, Radiomics nomogram for the prediction of 2019 novel coronavirus pneumonia caused by SARS-CoV-2, 30(12) (2020) 6888–6901.
- An improved multivariate model that distinguishes COVID-19 from seasonal flu and other respiratory diseases.Aging. 2020; 12: 19938-19944
- Introduction to radiomics.J. Nucl. Med.: Off. Publ., Soc. Nucl. Med. 2020; 61: 488-495
- A rapid screening classifier for diagnosing COVID-19.Int. J. Biol. Sci. 2021; 17: 539-548
- CT radiomics facilitates more accurate diagnosis of COVID-19 pneumonia: compared with CO-RADS.J. Transl. Med. 2021; 19: 29
- COVIDiag: a clinical CAD system to diagnose COVID-19 pneumonia based on CT findings.Eur. Radiol. 2021; 31: 121-130
- Artificial intelligence augmentation of radiologist performance in distinguishing COVID-19 from pneumonia of other origin at chest CT.Radiology. 2020; 296: E156-e165
- Diagnostic accuracy and interobserver variability of CO-RADS in patients with suspected coronavirus disease-2019: a multireader validation study.. 2021; 31: 1932-1940
- End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT.Eur. J. Nucl. Med. Mol. Imaging. 2020; 47: 2516-2524
- Features of 2019 Novel Coronavirus (2019-nCoV).Radiology. 2020; 295: 202-207
- Fleischner society: glossary of terms for thoracic imaging.Radiology. 2008; 246: 697-722
- Radiographic and CT features of viral pneumonia.. 2018; 38: 719-739
P. Reittner, S. Ward, L. Heyneman, T. Johkoh, N.L.J.Er Müller, Pneumonia: high-resolution CT findings in 114 patients, 13(3) (2003) 515–521.
- Chest CT features of community-acquired respiratory viral infections in adult inpatients with lower respiratory tract infections.J. Thorac. Imaging. 2010; 25: 68-75
- Radio.: Process Chall. 2012; 30: 1234-1248
P. Lambin, E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R.G. Van Stiphout, P. Granton, C.M. Zegers, R. Gillies, R. Boellard, A.J.Ejoc. Dekker, Radiomics: extracting more information from medical images using advanced feature analysis, 48(4) (2012) 441–446.
- Deep learning in biomedicine.Nat. Biotechnol. 2018; 36: 829-838
- Deep Learn. 2015; 521: 436-444
L. Alzubaidi, J. Zhang, A.J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M.A. Fadhel, M. Al-Amidie, L.J.JobD. Farhan, Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions, 8(1) (2021) 1–74.
H.-C. Shin, H.R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, R.M.J.Itomi. Summers, Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning, 35(5) (2016) 1285–1298.
- A meta-analysis of computerized tomography-based radiomics for the diagnosis of COVID-19 and viral pneumonia.Diagnostics. 2021; 11
- Artificial intelligence-driven assessment of radiological images for COVID-19.Comput. Biol. Med. 2021; 136104665
- Review of artificial intelligence techniques in imaging data acquisition, segmentation, and diagnosis for COVID-19.IEEE Rev. Biomed. Eng. 2021; 14: 4-15
- Role of artificial intelligence in COVID-19 detection.Sensors. 2021; 21
- A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence.Comput. Biol. Med. 2021; 130104210
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy