Abstract
Objectives
Materials and Methods
Results
Conclusions
Abbreviations:
HTA (humeral torsion angle), ICC (Intra Class Correlation)Keywords
1. Introduction
ex | Author | n (measured humeri) | Average humeral retrotorsion angle |
---|---|---|---|
(range or ± SD); degrees | |||
Methods using the measurement technique according to Bernageau/Godefroy [42] with CT or MRI scans | |||
1 | Bernageau [42] | N/A | N/A (only description of measuring method with CT) |
2 | Matsumura [22] | 410 | 26° ( ± 11) |
3 | Cassagnaud [4] | 64 | 11.71° (−17.5°−54°) dominant |
7.03° (−28°−47°) non-dominant | |||
4 | Symeonides [36] | 80 | 16.1° ( ± 11.07) stable group |
4.3° ( ± 10.56) unstable group | |||
5 | Randelli [29] | 180 | 30° (25°−35°) stable group |
30° (28°−35°) unstable group | |||
6 | Laumann [21] | 32 | 28°− 31° |
7 | Oh [24] | 28 | 31.42° ( ± 12.1) |
8 | Tellioğlu [37] | 36 | 19.5° (−4 to 41°) |
9 | Myers [23] | 24 | 32.4° ( ± 11.4) dominant |
25.2° ( ± 7.7) non-dominant | |||
10 | Pan [26] | 20 cadaveric specimens | 32.1° ( ± 14.1) |
11 | Guenoun [12] | 60 cadaveric specimens | 12.3° ( ± 7.9) |
12 | Hernigou [16] | 60 cadaveric specimens | 23° (15–38) |
13 | Hernigou [17] | 120 cadaveric specimens | 17.1° ( ± 8.1) |
14 | Boileau [3] | 65 cadaveric specimens | 16.1° ( ± 13.3) |
15 | Doyle [11] | 41 living shoulders and 9 cadaveric specimens | 26.8° ( ± 12.2) |
Methods using measurement techniques with CT scans differing from Bernageau/Godefroy | |||
16 | Oh [24] | 28 | 29.7° ( ± 11.66) |
30.64° ( ± 11.24) | |||
30.41° ( ± 11.17) | |||
32.14° ( ± 11.7) | |||
17 | Myers [23] | 24 | 68.3° ( ± 14.2) dominant |
52.5° ( ± 12.6) non-dominant | |||
18 | Hernigou [16] | 60 cadaveric specimens | 38° (30°−53°) |
19 | Chu [5] | 28 | 41.1° ( ± 17.1) |
20 | Raniga [30] | 59 living shoulders vs. 59 cadaveric specimens | 36° ( ± 12) normal group |
14° ( ± 9) Walch type B group | |||
21 | Saka [34] | 28 | N/A but reliable method between different testers |
22 | Robertson [32] | 60 cadaveric specimens | 19° ( ± 6) |
23 | Dähnert [7] | 50 | 55.6° right, 54.6° left |
(values within 56° of difference) | |||
Methods using measurement techniques with ultrasound | |||
24 | Myers [23] | 24 | 74.2° ( ± 14.5) dominant |
61.2° ( ± 14.4) non-dominant | |||
25 | Yaari [39] | 40 | 20° ( ± 10) dominant |
29° ( ± 12) non-dominant | |||
26 | Hannah [13] | 30 | 64.4° ( ± 9.5) measured at sulcus site |
63.1° ( ± 9.6) measured at forearm site | |||
27 | Dashottar [8] | 49 | 31.5° ( ± 7.5) |
28 | Yoshida [40] | 74 | 68.5° ( ± 10) dominant |
58° ( ± 8.4) non-dominant | |||
29 | Whiteley [38] | 102 | 18.2° ( ± 9.6) dominant |
19.8° ( ± 10.8) non-dominant | |||
30 | Ito [18] | 58 | 15.1° ( ± 3.9) right |
15.1° ( ± 2.9) left | |||
31 | Harland [14] | 111 | 60.9° (85.6% of all values between 40°−80°) |
Methods using measurement techniques with X-ray | |||
32 | Hernigou [17] | 120 cadaveric specimens | 19.2° ( ± 9.5) |
33 | Boileau [3] | 65 cadaveric specimens | 22.2° ( ± 14.9) |
34 | Oztuna [25] | 40 | 26° (7°−47°) |
35 | Kronberg [19] | 100 | 33° ( ± 9.3) dominant |
29° ( ± 8.4) non-dominant | |||
36 | Söderlund [35] | 3 cadaveric specimens and 32 living shoulders | N/A (only description of new X-ray method) |
37 | Pieper [28] | 175 | 40.1° ( ± 5.7) normal group |
24.3° ( ± 10.6) anterior dislocation group | |||
55.7° ( ± 5.1) posterior dislocation group | |||
38 | Cyprien [6] | 158 | Stable group: |
22.2° ( ± 10.25) right, 18° ( ± 9.41) left | |||
Unstable group 1: | |||
18.5° ( ± 10.39) right, 12.9° ( ± 11.18) left | |||
Unstable group 2: | |||
18.2° ( ± 8.12) right, 18.3° ( ± 11.51) left | |||
39 | Saha [33] | N/A | 30° (N/A) |
40 | Debevoise [9] | 66 | 61.2° (47°−85°) stable |
76.5° (63°−104°) unstable | |||
Methods using measurement techniques with digitization, surface measurements with laser or coordinate machines, palpation, photography, or direct measurements with anatomical landmarks | |||
41 | Boileau [3] | 65 cadaveric specimens | 17.9° ( ± 13.7) for transepicondylar axis |
21.5° ( ± 15.1) for capitellotrochlear joint line | |||
17.2° ( ± 12.6) direct measurement | |||
42 | Harrold [15] | 24 cadaveric specimens | 18.6° ( ± 10) |
43 | Yaari [39] | 40 | 32° ( ± 6) dominant |
27° ( ± 4) non-dominant | |||
44 | Patil [27] | 250 cadaveric specimens | 64.57° ( ± 7.56) |
45 | Dashottar [8] | 49 | 30.5° ( ± 7.9) |
46 | DeLude [10] | 28 cadaveric specimens | 41.1° ( ± 7.8) left |
35.6° ( ± 9.1) right | |||
47 | Kummer [20] | 420 cadaveric specimens | 28.3° ( ± 13.2) |
48 | Roberts [31] | 39 cadaveric specimens | 21.4° (18.5°−25°) |
49 | Martin [2] | N/A | 16° (N/A) |
2. Materials and methods
2.1 Patients
2.2 Imaging
2.3 HTA measurement



2.4 Statistics
[email protected], StatTools: Combine Means and SDs Into One Group Program, 2017. 〈http://www.obg.cuhk.edu.hk/ResearchSupport/StatTools/CombineMeansSDs_Pgm.php〉. (Accessed May 14 2021).
3. Results
3.1 Measurements
Groups | p | n | Mean (deg) | min. (deg) | max. (deg) | SD (deg) | |
---|---|---|---|---|---|---|---|
all | Circle-method | 0.57 | 67 | 24 | -73 | 83 | 27 |
B&G-method | 67 | 25 | -64 | 80 | 25 | ||
Stable | Circle-method | 0.004 | 32 | 21 | -24 | 58 | 24 |
B&G-method | 32 | 26 | -21 | 67 | 22 | ||
Unstable | Circle-method | 0.26 | 35 | 27 | -73 | 83 | 30 |
B&G-method | 35 | 24 | -64 | 80 | 28 | ||
Circle-method | Stable | 0.47 | 32 | 21 | -24 | 58 | 24 |
Unstable | 35 | 27 | -73 | 83 | 30 | ||
B&G-method, control | Stable | 0.74 | 32 | 26 | -21 | 67 | 22 |
Unstable | 35 | 24 | -64 | 80 | 28 |
3.2 Interobserver variability
3.3 Hill Sachs lesions
Groups | p | n | Mean (deg) | min. (deg) | max. (deg) | SD (deg) | |
---|---|---|---|---|---|---|---|
No Hill-Sachs lesion | Circle-method | 0.75 | 14 | 28 | -27 | 83 | 29 |
B&G-method | 14 | 26 | -18 | 80 | 30 | ||
With Hill- Sachs lesion | Circle-method | 0.13 | 21 | 26 | -74 | 71 | 32 |
B&G-method | 21 | 23 | -64 | 66 | 28 | ||
Circle-method | No Hill-Sachs lesion | 0.61 | 14 | 28 | -27 | 83 | 29 |
With Hill-Sachs lesion | 21 | 26 | -73 | 71 | 32 | ||
B&G-method | No Hill-Sachs lesion | 0.67 | 14 | 26 | -18 | 80 | 30 |
With Hill-Sachs lesion | 21 | 22 | -64 | 66 | 28 |
3.4 Shoulder Instability
4. Discussion
5. Conclusion
Ethical statement
Funding
CRediT authorship contribution statement
Level of evidence
Declaration of Competing Interest
References
- A study of glenohumeral orientation in patients with anterior recurrent shoulder dislocations using computerized axial tomography.Orthop. Rev. 1989; 18: 84-91
R. Martin, Lehrbuch der Anthropologie, Verlag von Gustav Fischer, Jena, 1914.
- CT scan method accurately assesses humeral head retroversion.Clin. Orthop. Relat. Res. 2008; 466: 661-669
- A study of reproducibility of an original method of CT measurement of the lateralization of the intertubercular groove and humeral retroversion.Surg. Radio. Anat. 2003; 25: 145-151
- Geometrical analysis for assessing torsional alignment of humerus.BMC Musculoskelet. Disord. 2020; 21: 92
- Humeral retrotorsion and glenohumeral relationship in the normal shoulder and in recurrent anterior dislocation (Scapulometry).Clin. Orthop. Relat. Res. 1983; 175: 8-17
- [Computer tomography determination of the torsion angle of the humerus].Z. fur Orthopadie und ihre Grenzgeb. 1986; 124: 46-49
- Validity of measuring humeral torsion using palpation of bicipital tuberosities.Physiother. Theory Pr. 2013; 29: 67-74
- Humeral torsion in recurrent shoulder dislocations. A technic of determination by X-ray.Clin. Orthop. Relat. Res. 1971; 76: 87-93
- An anthropometric study of the bilateral anatomy of the humerus.J. Shoulder Elb. Surg. 2007; 16: 477-483
- Comparison of humeral head retroversion with the humeral axis/biceps groove relationship: a study in live subjects and cadavers.J. Shoulder Elb. Surg. 1998; 7: 453-457
- Correlation between the retroversion of the humeral head and the orientation of the intertubercular sulcus: a CT scan anatomical study.Surg. Radio. Anat. 2015; 37: 357-361
- Reliability and Validity of a 1-Person Technique to Measure Humeral Torsion Using Ultrasound.J. Athl. Train. 2018; 53: 590-596
- [Sonographic determination of the humerus retrotorsion angle].Z. fur Orthopadie und ihre Grenzgeb. 1991; 129: 36-41
- A three-dimensional analysis of humeral head retroversion.J. Shoulder Elb. Surg. 2012; 21: 612-617
- Humerus retroversion and shoulder arthroplasty.Rev. Chir. Orthop. 1995; 81: 419-427
- Determining humeral retroversion with computed tomography.J. Bone Jt. Surg. 2002; 84: 1753-1762
- Ultrasonographic measurement of humeral torsion.J. Shoulder Elb. Surg. 1995; 4: 157-161
- Retroversion of the humeral head in the normal shoulder and its relationship to the normal range of motion.Clin. Orthop. Relat. Res. 1990; 253: 113-117
- The use of the bicipital groove for alignment of the humeral stem in shoulder arthroplasty.J. Shoulder Elb. Surg. 1998; 7: 144-146
- Computer Tomography on Recurrent Shoulder Dislocation.in: Bateman J.E. Welsh R.P. Surgery of the Shoulder, B. C. Decker Inc., Philadelphia, 1984: 84-86
- Morphologic features of humeral head and glenoid version in the normal glenohumeral joint.J. Shoulder Elb. Surg. 2014; 23: 1724-1730
- Ultrasonographic assessment of humeral retrotorsion in baseball players: a validation study.Am. J. Sports Med. 2012; 40: 1155-1160
- Measurement methods for humeral retroversion using two-dimensional computed tomography scans: which is most concordant with the standard method?.Clin. Orthop. Surg. 2017; 9: 223-231
- Measurement of the humeral head retroversion angle. A new radiographic method.Arch. Orthop. Trauma Surg. 2002; 122: 406-409
- Correlation between anatomical parameters of intertubercular sulcus and retroversion angle of humeral head.Int J. Clin. Exp. Med. 2015; 8: 4837-4845
- Determining Angle of Humeral Torsion Using Image Software Technique.J. Clin. Diagn. Res. 2016; 10: Ac6-Ac9
- Shoulder dislocation in skiing: choice of surgical method depending on the degree of humeral retrotorsion.Int J. Sports Med. 1985; 6: 155-160
- Glenohumeral osteometry by computed-tomography in normal and unstable shoulders.Clin. Orthop. Relat. Res. 1986; 208: 151-156
- The Walch type B humerus: glenoid retroversion is associated with torsional differences in the humerus.J. Shoulder Elb. Surg. 2019; 28: 1801-1808
- The geometry of the humeral head and the design of prostheses.J. Bone Jt. Surg. 1991; 73: 647-650
- Three-dimensional analysis of the proximal part of the humerus: relevance to arthroplasty.J. Bone Jt. Surg. 2000; 82: 1594-1602
- Dynamic stability of the glenohumeral joint.Acta Orthop. Scand. 1971; 42: 491-505
- Reliability and validity in measurement of true humeral retroversion by a three-dimensional cylinder fitting method.J. Shoulder Elb. Surg. 2015; 24: 809-813
- Radiologic assessment of humeral head retroversion. Description of a new method.Acta Radio. 1989; 30: 501-505
- Humeral head torsion in recurrent anterior dislocation of the shoulder.J. Bone Jt. Surg. -Br. Vol. 1995; 77: 687-690
- Determining torsion angle of humerus head using MRI method.Turk. J. Med Sci. 2014; 44: 639-642
- Indirect ultrasound measurement of humeral torsion in adolescent baseball players and non-athletic adults: reliability and significance.J. Sci. Med Sport. 2006; 9: 310-318
- Assessment of humeral torsion by palpation in baseball pitchers: a validation study.Int J. Sports Phys. Th. 2020; 15: 1073-1079
- Reliability of measuring humeral retroversion using ultrasound imaging in a healthy nonthrowing population.J. Sport Rehabil. 2010; 19: 149-160
- Rotation osteotomy of the proximal humerus to stabilise the shoulder. Five years' experience.J. Bone Jt. Surg. 1995; 77: 924-927
- Le Scanner de l′epaule.in: Morvan C. Massare G. Frija G. Le scanner ostéo-articulaire. Techniques d′utilisation, indication, résultats, Vigot, Paris, Paris1986: 171-178
- The grooved defect of the humeral head: a frequently unrecognized complication of dislocations of the shoulder joint.Radiology. 1940; 35: 690-700
- The declaration of Helsinki and public health.Bull. World Health Organ. 2008; 86: 650-651
- Radiological assessment of osteo-arthrosis.Ann. Rheum. Dis. 1957; 16: 494-502
- Classification of rotator cuff lesions.Clin. Orthop. Relat. Res. 1990; 254: 81-86
JASP Team, JASP (Version 0.14.1), University of Amsterdam, NL, 2020.
- Coefficient alpha and the internal structure of tests.Psychometrika. 1951; 16: 297-334
[email protected], StatTools: Combine Means and SDs Into One Group Program, 2017. 〈http://www.obg.cuhk.edu.hk/ResearchSupport/StatTools/CombineMeansSDs_Pgm.php〉. (Accessed May 14 2021).
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy