Highlights
- ●As new radiopharmaceuticals are identified to target specific receptors, tissues, and tumor types, opportunities expand for the development of both diagnostic and theranostic agents.
- ●Theranostics is an important pillar in the management of metastatic thyroid cancer, and is becoming increasingly uimportant in other cancers such as neuroendocrine tumors and prostate cancer.
Abstract
Keywords
1. Introduction
2. Ideal therapeutic radionuclide properties and modes of delivery of radionuclide therapy


Radionuclides | Radiopharmaceutical | Type of destructive radiation | Imaging photon |
---|---|---|---|
Iodine-131 | 131-I-NaI 131-I-MIBG 131-I-tositumomab 131-I-Rituximab | Beta - a maximal energy of 606 keV (89% abundance, range 248–807 keV) Half-life: 8.04days Range: 0.4 mm | 364 keV gamma rays (81% abundance, others 723 keV). |
Lutetium-177 | 177-Lu-DOTATATE 177-Lu- EDTMP 177Lu-PSMA | Beta - a maximal energy of 497 keV (78.6%), 384 keV (9.1%) and 176 keV (12.2%) Half-life: 6.7 days; Range: 0.2 mm | 208 keV (11.1%), 113 keV (6.6%) gamma photons |
Samarium-153 | 153-Sm-EDTMP | Beta- a maximal energy of 810 keV (20%), 710 keV (50%) and 640 keV (30%) Half-life: 1.93days; Range: 0.5 mm | 103 keV gamma photon (29%) |
Phosphorus-32 | 32-P-Phosphorus Chromate | Beta-maximum energy of 1.71 MeV Half-life 14.28 days; average range: 3.2 mm | None |
Strontium-89 | 89-Strontium Chloride | Beta- maximum energy is 1.463 MeV Half-life 50.57 days; average range: 2.4 mm | None |
Yttrium-90 | 90-Y-DOTATATE 90-Y-microspheres 90-Y-sirspheres 90-Y-PSMA 90-Y- Ibritumomab Tiuxetan | Beta- maximum energy of 2.28 MeV with an average beta energy of 0.9336 MeV. Half-life:64.1days; average range: 2.5 mm | Bremsstrahlung PET imaging of 0.01% |
Radium-223 | 223-Radium dichloride | radium-223 and its daughters as alpha-particles is 95.3% (energy range of 5.0–7.5 MeV). The fraction emitted as beta-particles is 3.6% (average energies are 0.445 MeV and 0.492 MeV), Half-life of 11.4 days range in tissue of < 100 µm. | and the fraction emitted as gamma-radiation is 1.1% (energy range of 0.01–1.27 MeV) |
Actinium-225 | 225-Ac-PSMA | 4 alpha particles with energies ranging from 5.8–8.4 MeV and 3 beta particles with energy ranging from 198 to 659 keV Half-life:10days, Range: 47–85 µm | 218 keV and 440 keV gamma photon |
Rhenium-188 | 188-Re-lipoidol | Beta- maximal energy is 2.12 MeV Half-life: 16.98 hr Range: 3.8 mm | 155kev gamma ray and bremsstrahlung radiation |
Rhenium-186 | 186-Re-lipoidol 186-Re-HEDP | beta particles of 1.07 MeV and Half-life of 3.8 days. Range: 4.5 mm | 137 keV gamma ray |
2.1 Prostate cancer
Very low risk | T1c, PSA < 10 ng/mL, Gleason score of < or = 6, < 3 core positive with < or = 50% cancer in each core |
Low risk | T1-T2a, PSA < 10 ng/mL, Gleason score of < or = 6 |
Intermediate risk | T2b-T2c, PSA 10–20 ng/mL, Gleason score of 3 + 4 or 4 + 3 |
High risk | T3a, PSA > 20 ng/mL, Gleason score of 8, 9, or 10 |
Very High risk | T3b-T4, Primary Gleason pattern 5, or score of 8, 9, or 10 |

- Zechmann C.M.
- Afshar-Oromieh A.
- Armor T.
- Stubbs J.B.
- Mier W.
- Hadaschik B.
- Joyal J.
- Kopka K.
- Debus J.
- Babich J.W.
- Haberkorn U.
- Zechmann C.M.
- Afshar-Oromieh A.
- Armor T.
- Stubbs J.B.
- Mier W.
- Hadaschik B.
- Joyal J.
- Kopka K.
- Debus J.
- Babich J.W.
- Haberkorn U.
- Kratochwil C.
- Fendler W.P.
- Eiber M.
- Baum R.
- Bozkurt M.F.
- Czernin J.
- Delgado Bolton R.C.
- Ezziddin S.
- Forrer F.
- Hicks R.J.
- Hope T.A.
- Kabasakal L.
- Konijnenberg M.
- Kopka K.
- Lassmann M.
- Mottaghy F.M.
- Oyen W.
- Rahbar K.
- Schoder H.
- Virgolini I.
- Wester H.J.
- Bodei L.
- Fanti S.
- Haberkorn U.
- Herrmann K.
2.2 Agents
2.2.1 Lu-177-PSMA-617
- Hofman M.S.
- Emmett L.
- Sandhu S.
- Iravani A.
- Joshua A.M.
- Goh J.C.
- Pattison D.A.
- Tan T.H.
- Kirkwood I.D.
- Ng S.
- Francis R.J.
- Gedye C.
- Rutherford N.K.
- Weickhardt A.
- Scott A.M.
- Lee S.T.
- Kwan E.M.
- Azad A.A.
- Ramdave S.
- Redfern A.D.
- Macdonald W.
- Guminski A.
- Hsiao E.
- Chua W.
- Lin P.
- Zhang A.Y.
- McJannett M.M.
- Stockler M.R.
- Violet J.A.
- Williams S.G.
- Martin A.J.
- Davis I.D.
- Thera P.T.I.
[(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial.
- Sartor O.
- de Bono J.
- Chi K.N.
- Fizazi K.
- Herrmann K.
- Rahbar K.
- Tagawa S.T.
- Nordquist L.T.
- Vaishampayan N.
- El-Haddad G.
- Park C.H.
- Beer T.M.
- Armour A.
- Perez-Contreras W.J.
- DeSilvio M.
- Kpamegan E.
- Gericke G.
- Messmann R.A.
- Morris M.J.
- Krause B.J.
- Investigators VSION
- Ahmadzadehfar H.
- Wegen S.
- Yordanova A.
- Fimmers R.
- Kurpig S.
- Eppard E.
- Wei X.
- Schlenkhoff C.
- Hauser S.
- Essler M.
- Kratochwil C.
- Fendler W.P.
- Eiber M.
- Baum R.
- Bozkurt M.F.
- Czernin J.
- Delgado Bolton R.C.
- Ezziddin S.
- Forrer F.
- Hicks R.J.
- Hope T.A.
- Kabasakal L.
- Konijnenberg M.
- Kopka K.
- Lassmann M.
- Mottaghy F.M.
- Oyen W.
- Rahbar K.
- Schoder H.
- Virgolini I.
- Wester H.J.
- Bodei L.
- Fanti S.
- Haberkorn U.
- Herrmann K.
2.2.2 Ac-225-PSMA-617
G. Sgouros, J.C. Roeske, M.R. McDevitt, S. Palm, B.J. Allen, D.R. Fisher, A.B. Brill, H. Song, R.W. Howell, G. Akabani, S.M. Committee, W.E. Bolch, A.B. Brill, D.R. Fisher, R.W. Howell, R.F. Meredith, G. Sgouros, B.W. Wessels, P.B. Zanzonico, MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy, J Nucl Med 51(2) (2010) 311–28.

2.3 Treatment protocols
- Kratochwil C.
- Fendler W.P.
- Eiber M.
- Baum R.
- Bozkurt M.F.
- Czernin J.
- Delgado Bolton R.C.
- Ezziddin S.
- Forrer F.
- Hicks R.J.
- Hope T.A.
- Kabasakal L.
- Konijnenberg M.
- Kopka K.
- Lassmann M.
- Mottaghy F.M.
- Oyen W.
- Rahbar K.
- Schoder H.
- Virgolini I.
- Wester H.J.
- Bodei L.
- Fanti S.
- Haberkorn U.
- Herrmann K.
2.4 Toxicities
- Rahbar K.
- Ahmadzadehfar H.
- Kratochwil C.
- Haberkorn U.
- Schafers M.
- Essler M.
- Baum R.P.
- Kulkarni H.R.
- Schmidt M.
- Drzezga A.
- Bartenstein P.
- Pfestroff A.
- Luster M.
- Lutzen U.
- Marx M.
- Prasad V.
- Brenner W.
- Heinzel A.
- Mottaghy F.M.
- Ruf J.
- Meyer P.T.
- Heuschkel M.
- Eveslage M.
- Bogemann M.
- Fendler W.P.
- Krause B.J.
- Afshar-Oromieh A.
- Avtzi E.
- Giesel F.L.
- Holland-Letz T.
- Linhart H.G.
- Eder M.
- Eisenhut M.
- Boxler S.
- Hadaschik B.A.
- Kratochwil C.
- Weichert W.
- Kopka K.
- Debus J.
- Haberkorn U.
- Rahbar K.
- Ahmadzadehfar H.
- Kratochwil C.
- Haberkorn U.
- Schafers M.
- Essler M.
- Baum R.P.
- Kulkarni H.R.
- Schmidt M.
- Drzezga A.
- Bartenstein P.
- Pfestroff A.
- Luster M.
- Lutzen U.
- Marx M.
- Prasad V.
- Brenner W.
- Heinzel A.
- Mottaghy F.M.
- Ruf J.
- Meyer P.T.
- Heuschkel M.
- Eveslage M.
- Bogemann M.
- Fendler W.P.
- Krause B.J.
- Yordanova A.
- Becker A.
- Eppard E.
- Kurpig S.
- Fisang C.
- Feldmann G.
- Essler M.
- Ahmadzadehfar H.
2.5 Future trends
Various PSMA tracers | Key features | Reference |
---|---|---|
PSMA-617 | Most widely used for therapy Can be labeled with multiple radionuclides Slower renal clearance compared to PSMA-11 | [21]
German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J. Nucl. Med. 2017; 58: 85-90 |
PSMA-I and T | Higher receptor affinity. Biodistribution studies showed slightly lower physiologic tracer uptake in the liver, spleen and intestine and slightly higher uptake in the proximal tubules of the kidneys and salivary glands | [128]
Lutetium-177-PSMA-I&T as metastases directed therapy in oligometastatic hormone sensitive prostate cancer, a randomized controlled trial. BMC Cancer. 2020; 20: 884 |
JF91 | Anti-PSMA antibody Has slow diffusion in solid lesions Long circulation time High hematologic toxicity | [104] |
PSMA/CD3-bispecific BiTE antibody BAY2010112 (AMG212, MT112) | In preclinical studies, found to have suppress tumor growth Acceptable safety profile | 129 ,
Preclinical evaluation of AMG 160, a next-generation bispecific T cell engager (BiTE) targeting the prostate-specific membrane antigen PSMA for metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2019; 37 (301-301) 130
Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting Bispecific T Cell Engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2019; 37 (5034-5034) |
3. Neuroendocrine tumor
- De Jong M.
- Bakker W.H.
- Breeman W.A.
- Bernard B.F.
- Hofland L.J.
- Visser T.J.
- Srinivasan A.
- Schmidt M.
- Behe M.
- Macke H.R.
- Krenning E.P.
- Chan D.L.
- Pavlakis N.
- Schembri G.P.
- Bernard E.J.
- Hsiao E.
- Hayes A.
- Barnes T.
- Diakos C.
- Khasraw M.
- Samra J.
- Eslick E.
- Roach P.J.
- Engel A.
- Clarke S.J.
- Bailey D.L.

NETPET Scoring | |
---|---|
P0 | Negative on 68Ga-DOTATATE and 18 F-FDG |
P1 | Positive on 68Ga-DOTATATE and negative on 18 F-FDG |
P2 | Positive on 68Ga-DOTATATE and 18 F-FDG; 18 F-FDG uptake less than 68Ga-DOTATATE uptake |
P3 | Positive on 68Ga-DOTATATE and 18 F-FDG; 18 F-FDG uptake similar to 68Ga-DOTATATE uptake |
P4 | Positive on 68Ga-DOTATATE and 18 F-FDG; 18 F-FDG uptake more than 68Ga-DOTATATE uptake |
P5 | Negative on 68Ga-DOTATATE and positive on 18 F-FDG |
3.1 Agents
- Strosberg J.
- El-Haddad G.
- Wolin E.
- Hendifar A.
- Yao J.
- Chasen B.
- Mittra E.
- Kunz P.L.
- Kulke M.H.
- Jacene H.
- Bushnell D.
- O'Dorisio T.M.
- Baum R.P.
- Kulkarni H.R.
- Caplin M.
- Lebtahi R.
- Hobday T.
- Delpassand E.
- Van Cutsem E.
- Benson A.
- Srirajaskanthan R.
- Pavel M.
- Mora J.
- Berlin J.
- Grande E.
- Reed N.
- Seregni E.
- Oberg K.
- Lopera Sierra M.
- Santoro P.
- Thevenet T.
- Erion J.L.
- Ruszniewski P.
- Kwekkeboom D.
- Krenning E.
Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors.
J.R. Strosberg, M.E. Caplin, P.L. Kunz, P.B. Ruszniewski, L. Bodei, A.E. Hendifar, E. Mittra, E.M. Wolin, J.C. Yao, M.E. Pavel, E. Grande, E.V. Cutsem, E. Seregni, H. Duarte, G. Gericke, A. Bartalotta, A. Demange, S. Mutevelic, E. Krenning, o.b.o.t.N.-s. group, Final overall survival in the phase 3 NETTER-1 study of lutetium-177-DOTATATE in patients with midgut neuroendocrine tumors, Journal of Clinical Oncology 39(15_suppl) (2021) 4112–4112.
- Tapia Rico G.
- Li M.
- Pavlakis N.
- Cehic G.
- Price T.J.
- Bodei L.
- Mueller-Brand J.
- Baum R.P.
- Pavel M.E.
- Horsch D.
- O'Dorisio M.S.
- O'Dorisio T.M.
- Howe J.R.
- Cremonesi M.
- Kwekkeboom D.J.
- Zaknun J.J.
North American Neuroendocrine Tumor Society (NANETS) Recommendations (2013) | |
---|---|
Hemoglobin | > 8 g/dL |
White blood cell (WBC) | > 2000/mm3 |
Platelets | > 70, 000/mm3 |
Estimated Glomerular filtration rate (GFR) | > 50 mL/min |
Total Bilirubin | < /= 3times the upper limit of normal |
Serum albumin | > 3.0 g/dL |
Joint International Atomic Energy Agency (IAEA), EANM and Society of Nuclear Medicine and Molecular Imaging (SNMMI) Recommendations (2020) | |
WBC | > 3000/μl, with absolute neutrophil count < 1000/μl |
Platelets | > 75,000/μl for 177Lu-DOTATATE, < 90,000/μl for 90Y-DOTATOC, |
Red blood cell (RBC) | > 3000,000/μl |
3.2 Comparison to molecular targeted therapy
J.R. Strosberg, M.E. Caplin, P.L. Kunz, P.B. Ruszniewski, L. Bodei, A.E. Hendifar, E. Mittra, E.M. Wolin, J.C. Yao, M.E. Pavel, E. Grande, E.V. Cutsem, E. Seregni, H. Duarte, G. Gericke, A. Bartalotta, A. Demange, S. Mutevelic, E. Krenning, o.b.o.t.N.-s. group, Final overall survival in the phase 3 NETTER-1 study of lutetium-177-DOTATATE in patients with midgut neuroendocrine tumors, Journal of Clinical Oncology 39(15_suppl) (2021) 4112–4112.
- Strosberg J.
- Kunz P.L.
- Hendifar A.
- Yao J.
- Bushnell D.
- Kulke M.H.
- Baum R.P.
- Caplin M.
- Ruszniewski P.
- Delpassand E.
- Hobday T.
- Verslype C.
- Benson A.
- Srirajaskanthan R.
- Pavel M.
- Mora J.
- Berlin J.
- Grande E.
- Reed N.
- Seregni E.
- Paganelli G.
- Severi S.
- Morse M.
- Metz D.C.
- Ansquer C.
- Courbon F.
- Al-Nahhas A.
- Baudin E.
- Giammarile F.
- Taieb D.
- Mittra E.
- Wolin E.
- O'Dorisio T.M.
- Lebtahi R.
- Deroose C.M.
- Grana C.M.
- Bodei L.
- Oberg K.
- Polack B.D.
- He B.
- Mariani M.F.
- Gericke G.
- Santoro P.
- Erion J.L.
- Ravasi L.
- Krenning E.
- N.-s. group

3.3 Toxicity
- Bodei L.
- Mueller-Brand J.
- Baum R.P.
- Pavel M.E.
- Horsch D.
- O'Dorisio M.S.
- O'Dorisio T.M.
- Howe J.R.
- Cremonesi M.
- Kwekkeboom D.J.
- Zaknun J.J.
- Garske-Roman U.
- Sandstrom M.
- Fross Baron K.
- Lundin L.
- Hellman P.
- Welin S.
- Johansson S.
- Khan T.
- Lundqvist H.
- Eriksson B.
- Sundin A.
- Granberg D.
- Bodei L.
- Mueller-Brand J.
- Baum R.P.
- Pavel M.E.
- Horsch D.
- O'Dorisio M.S.
- O'Dorisio T.M.
- Howe J.R.
- Cremonesi M.
- Kwekkeboom D.J.
- Zaknun J.J.
- Garske-Roman U.
- Sandstrom M.
- Fross Baron K.
- Lundin L.
- Hellman P.
- Welin S.
- Johansson S.
- Khan T.
- Lundqvist H.
- Eriksson B.
- Sundin A.
- Granberg D.
- Halfdanarson T.R.
- Strosberg J.R.
- Tang L.
- Bellizzi A.M.
- Bergsland E.K.
- O'Dorisio T.M.
- Halperin D.M.
- Fishbein L.
- Eads J.
- Hope T.A.
- Singh S.
- Salem R.
- Metz D.C.
- Naraev B.G.
- Reidy-Lagunes D.L.
- Howe J.R.
- Pommier R.F.
- Menda Y.
- Chan J.A.
3.4 Future trends

N. Pavlakis, D.T. Ransom, D. Wyld, K.M. Sjoquist, R. Asher, V. Gebski, K. Wilson, A.D. Kiberu, M.E. Burge, W. Macdonald, P. Roach, D.A. Pattison, P. Butler, T.J. Price, M. Michael, B.J. Lawrence, D.L. Bailey, S. Leyden, J.R. Zalcberg, J.H. Turner, Australasian Gastrointestinal Trials Group (AGITG) CONTROL NET Study: Phase II study evaluating the activity of 177Lu-Octreotate peptide receptor radionuclide therapy (LuTate PRRT) and capecitabine, temozolomide CAPTEM)—First results for pancreas and updated midgut neuroendocrine tumors (pNETS, mNETS), Journal of Clinical Oncology 38(15_suppl) (2020) 4608–4608.
4. Thyroid cancer
4.1 Treatment guidelines
- Tuttle R.M.
- Ahuja S.
- Avram A.M.
- Bernet V.J.
- Bourguet P.
- Daniels G.H.
- Dillehay G.
- Draganescu C.
- Flux G.
- Fuhrer D.
- Giovanella L.
- Greenspan B.
- Luster M.
- Muylle K.
- Smit J.W.A.
- Van Nostrand D.
- Verburg F.A.
- Hegedus L.
- 1.Remanent ablation – ablation of benign thyroid tissue left behind after surgery
- 2.Adjuvant treatment – additional treatment to decrease the risk of recurrence
- 3.Treatment of known disease – which could be either biochemical recurrence or known structural inoperable disease.
- Tuttle R.M.
- Ahuja S.
- Avram A.M.
- Bernet V.J.
- Bourguet P.
- Daniels G.H.
- Dillehay G.
- Draganescu C.
- Flux G.
- Fuhrer D.
- Giovanella L.
- Greenspan B.
- Luster M.
- Muylle K.
- Smit J.W.A.
- Van Nostrand D.
- Verburg F.A.
- Hegedus L.
- 1.Known disease focus showing no iodine uptake in an appropriately prepared patient who received a high dose of iodine.
- 2.Disease increasing despite radioiodine therapy and uptake. This could either be a structural increase in disease or rise in tumor marker, or both.
- Tuttle R.M.
- Ahuja S.
- Avram A.M.
- Bernet V.J.
- Bourguet P.
- Daniels G.H.
- Dillehay G.
- Draganescu C.
- Flux G.
- Fuhrer D.
- Giovanella L.
- Greenspan B.
- Luster M.
- Muylle K.
- Smit J.W.A.
- Van Nostrand D.
- Verburg F.A.
- Hegedus L.
4.2 Treatment protocols
- Haugen B.R.
- Alexander E.K.
- Bible K.C.
- Doherty G.M.
- Mandel S.J.
- Nikiforov Y.E.
- Pacini F.
- Randolph G.W.
- Sawka A.M.
- Schlumberger M.
- Schuff K.G.
- Sherman S.I.
- Sosa J.A.
- Steward D.L.
- Tuttle R.M.
- Wartofsky L.
N. American Thyroid Association Guidelines Taskforce on Thyroid, C. Differentiated Thyroid, D.S. Cooper, G.M. Doherty, B.R. Haugen, R.T. Kloos, S.L. Lee, S.J. Mandel, E.L. Mazzaferri, B. McIver, F. Pacini, M. Schlumberger, S.I. Sherman, D.L. Steward, R.M. Tuttle, Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer, Thyroid 19(11) (2009) 1167–214.
Dose | Site of disease |
---|---|
30–50 mCi | Remanent ablation |
50–150 mCi | Loco-regional positive disease including nodal or metastatic disease |
100–200 mCi | Lung and bone metastatic disease |


4.3 Patient preparation for radioiodine therapy [[61]- Haugen B.R.
- Alexander E.K.
- Bible K.C.
- Doherty G.M.
- Mandel S.J.
- Nikiforov Y.E.
- Pacini F.
- Randolph G.W.
- Sawka A.M.
- Schlumberger M.
- Schuff K.G.
- Sherman S.I.
- Sosa J.A.
- Steward D.L.
- Tuttle R.M.
- Wartofsky L.
American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer.Thyroid 26(1) (2016). 2015; ]
- Haugen B.R.
- Alexander E.K.
- Bible K.C.
- Doherty G.M.
- Mandel S.J.
- Nikiforov Y.E.
- Pacini F.
- Randolph G.W.
- Sawka A.M.
- Schlumberger M.
- Schuff K.G.
- Sherman S.I.
- Sosa J.A.
- Steward D.L.
- Tuttle R.M.
- Wartofsky L.
- 1.Low iodine diet for 1–2 weeks
- 2.Avoiding CT imaging with contrast for 4–8 weeks
- 3.TSH of more than 30uIU/mL prior to radioiodine therapy administration. This could be achieved either by thyroid hormone withdrawal or with recombinant-TSH administration.
4.4 Toxicity
4.5 Future direction
- Ballal S.
- Yadav M.
- Moon E.S.
- Kumari S.
- Roesch F.
- Tripathi M.
- Tupalli A.
- Bal C.
- Spatz S.
- Tolkach Y.
- Jung K.
- Stephan C.
- Busch J.
- Ralla B.
- Rabien A.
- Feldmann G.
- Brossart P.
- Bundschuh R.A.
- Ahmadzadehfar H.
- Essler M.
- Toma M.
- Muller S.C.
- Ellinger J.
- Hauser S.
- Kristiansen G.
5. Liver-directed therapies
5.1 TARE vs. TACE
Property | 90Y-sirspheres | 90Y-microspheres |
---|---|---|
Diameter of the sphere | 30–50 µm | 20–30 µm |
Maximum specific activity per sphere | 75 Bq | 2500 Bq |
Dose size available | 3GBq ± 10% | Multiple options ranging from 3 to 20Gbq |
Dose calculation | Empiric, Body surface area or the Partition method | MIRD method |
5.2 Administration
- 1.Identify the shunting of the tracer to the lungs (“shunt fraction”). The presence of arteriovenous or hepatopulmonary shunt within the tumor leads to the radionuclide trapping in the lungs’ capillary bed, which can result in radiation pneumonitis if a high amount of therapeutic radionuclide is delivered to the lungs. This is commonly done using planar imaging, but SPECT/CT has also been found to be useful in this calculation [[73]]. A lung shunt fraction of > 20% is generally considered a contraindication for treatment with resin spheres due to the risk of radiation pneumonitis [[74]].
- 2.Identify accessory vessels allowing activity to accumulate extrahepatic organs including the stomach, duodenum, pancreas, gallbladder, and falciform artery. If any of these are seen, precautions are taken to coil these vessels before radioembolization to prevent radiation-induced inflammation of these organs which could be life-threatening [[75]].
- 3.Identify the pattern of distribution of the tracer within the tumor and normal liver and calculate the dose: Tracer distribution in the liver and tumor can be categorized into 5 types (Fig. 10) [[76]]
J. Arbizu, M. Rodriguez-Fraile, J.M. Martí-Climent, I. Domínguez-Prado, C. Vigil, Nuclear Medicine Procedures for Treatment Evaluation and Administration, in: J.I. Bilbao, M.F. Reiser (Eds.), Liver Radioembolization with 90Y Microspheres, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 63–75.
Fig. 10showing different types of intrahepatic tracer distribution which can be seen on Tc-99m-MAA scan after injection of the tracer in the common hepatic artery.

5.3 Toxicity
- Cosimelli M.
- Golfieri R.
- Cagol P.P.
- Carpanese L.
- Sciuto R.
- Maini C.L.
- Mancini R.
- Sperduti I.
- Pizzi G.
- Diodoro M.G.
- Perrone M.
- Giampalma E.
- Angelelli B.
- Fiore F.
- Lastoria S.
- Bacchetti S.
- Gasperini D.
- Geatti O.
- Izzo F.
- Italian O.
5.4 Future directions
- Fleckenstein F.N.
- Roesel M.J.
- Krajewska M.
- Auer T.A.
- Collettini F.
- Maleitzke T.
- Boning G.
- Torsello G.F.
- Fehrenbach U.
- Gebauer B.
6. Lymphoma
Antibody | Notes | Antibody type | Indications |
---|---|---|---|
90Y-Ibritumomab tiuxetan (Zevalin) | Paired with surrogate 111In-ibritumomab tiuxetan for gamma imaging | Murine | FDA: 1) Previously untreated follicular NHL patients who achieve a partial or complete response to first-line chemotherapy (2) Relapsed or refractory low-grade, follicular, or transformed B-cell NHL |
131I Tositumomab (Bexxar) | Murine | Withdrawn: Relapsed or refractory low-grade, follicular, or transformed B-cell NHL | |
131I-rituximab | Chimeric | Indolent NHL | |
177Lu-rituximab | Paired with positron emitter 89Zr-rituximab for imaging | Chimeric | |
177Lu-ofatumumab | Paired with positron emitter 89Zr-ofatumumab for imaging | Human |
6.1 Agents
6.1.1 Y-90-Ibritumomab tiuxetan (Zevalin)
- Witzig T.E.
- Gordon L.I.
- Cabanillas F.
- Czuczman M.S.
- Emmanouilides C.
- Joyce R.
- Pohlman B.L.
- Bartlett N.L.
- Wiseman G.A.
- Padre N.
- Grillo-Lopez A.J.
- Multani P.
- White C.A.
6.1.2 I-131 Tositumomab (Bexxar)
- Press O.W.
- Unger J.M.
- Rimsza L.M.
- Friedberg J.W.
- LeBlanc M.
- Czuczman M.S.
- Kaminski M.
- Braziel R.M.
- Spier C.
- Gopal A.K.
- Maloney D.G.
- Cheson B.D.
- Dakhil S.R.
- Miller T.P.
- Fisher R.I.
6.1.3 I-131-Rituximab
- Kang H.J.
- Lee S.S.
- Byun B.H.
- Kim K.M.
- Lim I.
- Choi C.W.
- Suh C.
- Kim W.S.
- Nam S.H.
- Lee S.I.
- Eom H.S.
- Shin D.Y.
- Lim S.M.
- Illidge T.M.
- Bayne M.
- Brown N.S.
- Chilton S.
- Cragg M.S.
- Glennie M.J.
- Du Y.
- Lewington V.
- Smart J.
- Thom J.
- Zivanovic M.
- Johnson P.W.
- Forrer F.
- Oechslin-Oberholzer C.
- Campana B.
- Herrmann R.
- Maecke H.R.
- Mueller-Brand J.
- Lohri A.
6.2 Future directions
7. Neuroblastoma
7.1 Agent
- Decarolis B.
- Schneider C.
- Hero B.
- Simon T.
- Volland R.
- Roels F.
- Dietlein M.
- Berthold F.
- Schmidt M.
- Matthay K.K.
- Shulkin B.
- Ladenstein R.
- Michon J.
- Giammarile F.
- Lewington V.
- Pearson A.D.
- Cohn S.L.
CURIE SCORING | |
Maximum score | 30 |
Soft tissue considered | Yes |
Body divided in to | 10 segments |
Range of scores in each segment | 0–3 |
SIOPEN SCORING | |
Maximum score | 72 |
Soft tissue considered | No |
Body divided in to | 12 segments |
Range of scores in each segment | 0–6 |

7.2 Treatment protocol
Dose of 131IMIBG | Reference |
---|---|
8–12 mCi/kg | [114]
131I-metaiodobenzylguanidine with intensive chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma. A new approaches to neuroblastoma therapy (NANT) phase II study. Biol. Blood Marrow Transpl. 2015; 21: 673-681 |
13.5 + /- 12.9 mCi/kg | [131] |
18 mCi/Kg followed by autologous stem cell transplant | [113] |
Escalating doses of 3–18 mCi/kg | [111] |
Dosimetry-based | [108] |
- 1.I-131-mIBG therapy is used in relapsed/refractory disease settings, showing good results in bone/ bone marrow disease only or soft tissue disease only [[110]], with a response rate of 37%[
- Matthay K.K.
- Yanik G.
- Messina J.
- Quach A.
- Huberty J.
- Cheng S.C.
- Veatch J.
- Goldsby R.
- Brophy P.
- Kersun L.S.
- Hawkins R.A.
- Maris J.M.
Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma.J. Clin. Oncol. 2007; 25: 1054-1060[111]]. mIBG therapy appeared to have higher response rates when used in patients with new diagnoses [[112]]. - 2.I-131-mIBG therapy is followed by myeloablative chemotherapy with busulfan and melphalan with autologous stem cell transplant [[113]] or carboplatin, etoposide, and melphalan with autologous stem cell transplant [[114]].
- Yanik G.A.
- Villablanca J.G.
- Maris J.M.
- Weiss B.
- Groshen S.
- Marachelian A.
- Park J.R.
- Tsao-Wei D.
- Hawkins R.
- Shulkin B.L.
- Jackson H.
- Goodarzian F.
- Shimada H.
- Courtier J.
- Hutchinson R.
- Haas-Koga D.
- Hasenauer C.B.
- Czarnecki S.
- Katzenstein H.M.
- Matthay K.K.
131I-metaiodobenzylguanidine with intensive chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma. A new approaches to neuroblastoma therapy (NANT) phase II study.Biol. Blood Marrow Transpl. 2015; 21: 673-681
8. Other tumors/therapies
- Fishbein L.
- Del Rivero J.
- Else T.
- Howe J.R.
- Asa S.L.
- Cohen D.L.
- Dahia P.L.M.
- Fraker D.L.
- Goodman K.A.
- Hope T.A.
- Kunz P.L.
- Perez K.
- Perrier N.D.
- Pryma D.A.
- Ryder M.
- Sasson A.R.
- Soulen M.C.
- Jimenez C.
- Baum R.P.
- Schuchardt C.
- Singh A.
- Chantadisai M.
- Robiller F.C.
- Zhang J.
- Mueller D.
- Eismant A.
- Almaguel F.
- Zboralski D.
- Osterkamp F.
- Hoehne A.
- Reineke U.
- Smerling C.
- Kulkarni H.R.
- Assadi M.
- Rekabpour S.J.
- Jafari E.
- Divband G.
- Nikkholgh B.
- Amini H.
- Kamali H.
- Ebrahimi S.
- Shakibazad N.
- Jokar N.
- Nabipour I.
- Ahmadzadehfar H.
- Kratochwil C.
- Fendler W.P.
- Eiber M.
- Baum R.
- Bozkurt M.F.
- Czernin J.
- Delgado Bolton R.C.
- Ezziddin S.
- Forrer F.
- Hicks R.J.
- Hope T.A.
- Kabasakal L.
- Konijnenberg M.
- Kopka K.
- Lassmann M.
- Mottaghy F.M.
- Oyen W.
- Rahbar K.
- Schoder H.
- Virgolini I.
- Wester H.J.
- Bodei L.
- Fanti S.
- Haberkorn U.
- Herrmann K.

9. Conclusion
CRediT authorship contribution statement
Conflicts of interest
Financial disclosure
Declaration of Competing Interest
References
- Radionuclide therapy revisited.Eur. J. Nucl. Med. 1991; 18: 408-431
- Chemical and physical properties of radionuclides.Int J. Rad. Appl. Instrum. B. 1987; 14: 171-176
- Therapeutic radionuclides: production and decay property considerations.J. Nucl. Med. 1991; 32: 174-185
- Radionuclides and carrier molecules for therapy.Phys. Med. Biol. 1996; 41: 1905-1914
- Radiobiologic principles in radionuclide therapy.J. Nucl. Med. 2005; 46: 4S-12S
- The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation--no simple task.DNA Repair (Amst.). 2014; 17: 64-73
- Radiopharmaceutical therapy in cancer: clinical advances and challenges.Nat. Rev. Drug Discov. 2020; 19: 589-608
- Epidemiology of prostate cancer.World J. Oncol. 2019; 10: 63-89
- National comprehensive cancer network (NCCN) risk classification in predicting biochemical recurrence after radical prostatectomy: a retrospective cohort study in Chinese prostate cancer patients.Asian J. Androl. 2018; 20: 551-554
- Overview of prostate-specific membrane antigen.Rev. Urol. 2004; 6: S13-S18
- Radiation dosimetry and first therapy results with a (124)I/ (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy.Eur. J. Nucl. Med Mol. Imaging. 2014; 41: 1280-1292
- The rise of PSMA ligands for diagnosis and therapy of prostate cancer.J. Nucl. Med. 2016; 57: 79S-89S
- [177Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer.Eur. J. Nucl. Med. Mol. Imaging. 2015; 42: 987-988
- EANM procedure guidelines for radionuclide therapy with (177)Lu-labelled PSMA-ligands ((177)Lu-PSMA-RLT.Eur. J. Nucl. Med. Mol. Imaging. 2019; 46: 2536-2544
- [(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial.Lancet. 2021; 397: 797-804
- V. , Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer.N. Engl. J. Med. 2021; 385: 1091-1103
- Overall survival and response pattern of castration-resistant metastatic prostate cancer to multiple cycles of radioligand therapy using [(177)Lu]Lu-PSMA-617.Eur. J. Nucl. Med. Mol. Imaging. 2017; 44: 1448-1454
G. Sgouros, J.C. Roeske, M.R. McDevitt, S. Palm, B.J. Allen, D.R. Fisher, A.B. Brill, H. Song, R.W. Howell, G. Akabani, S.M. Committee, W.E. Bolch, A.B. Brill, D.R. Fisher, R.W. Howell, R.F. Meredith, G. Sgouros, B.W. Wessels, P.B. Zanzonico, MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy, J Nucl Med 51(2) (2010) 311–28.
- 225)Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study.Eur. J. Nucl. Med. Mol. Imaging. 2019; 46: 129-138
- Evolving role of (225)Ac-PSMA radioligand therapy in metastatic castration-resistant prostate cancer-a systematic review and meta-analysis.Prostate Cancer Prostatic Dis. 2021; 24: 880-890
- German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients.J. Nucl. Med. 2017; 58: 85-90
- PSMA-targeted radionuclide therapy and salivary gland toxicity: why does it matter?.J. Nucl. Med. 2018; 59: 747-748
- The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer.Eur. J. Nucl. Med Mol. Imaging. 2015; 42: 197-209
- PMPA for nephroprotection in PSMA-targeted radionuclide therapy of prostate cancer.J. Nucl. Med. 2015; 56: 293-298
- The impact of repeated cycles of radioligand therapy using [(177)Lu]Lu-PSMA-617 on renal function in patients with hormone refractory metastatic prostate cancer.Eur. J. Nucl. Med Mol. Imaging. 2017; 44: 1473-1479
- Keeping up with the prostate-specific membrane antigens (PSMAs): an introduction to a new class of positron emission tomography (PET) imaging agents.Transl. Androl. Urol. 2018; 7: 831-843
- Prostate-specific membrane antigen based antibody-drug conjugates for metastatic castration-resistance prostate cancer.Cureus. 2020; 12e7147
- Histopathological, immunohistochemical, genetic and molecular markers of neuroendocrine neoplasms.Ann. Transl. Med. 2018; 6: 252
- Neuropeptide receptors in health and disease: the molecular basis for in vivo imaging.J. Nucl. Med. 1995; 36: 1825-1835
- Hormone-producing gastrointestinal tumors contain a high density of somatostatin receptors.J. Clin. Endocrinol. Metab. 1987; 65: 1127-1134
- Carcinoid syndrome: a review.Cureus. 2020; 12e7186
- Clinical history of the theranostic radionuclide approach to neuroendocrine tumors and other types of cancer: historical review based on an interview of Eric P. Krenning by Rachel Levine.J. Nucl. Med. 2017; 58: 3S-9S
- Pre-clinical comparison of [DTPA0] octreotide, [DTPA0,Tyr3] octreotide and [DOTA0,Tyr3] octreotide as carriers for somatostatin receptor-targeted scintigraphy and radionuclide therapy.Int. J. Cancer. 1998; 75: 406-411
- Response to treatment with yttrium 90-DOTA-lanreotide of a patient with metastatic gastrinoma.J. Nucl. Med. 1998; 39: 2090-2094
- Therapy studies with [Lu-177]-DOTA-Y3-Octreotate in CA20948 tumor-implanted Lewis rats.Nucl. Med. Commun. 2000; 21: 570
- The 2019 WHO classification of tumours of the digestive system.Histopathology. 2020; 76: 182-188
- Dual somatostatin receptor/FDG PET/CT imaging in metastatic neuroendocrine tumours: proposal for a novel grading scheme with prognostic significance.Theranostics. 2017; 7: 1149-1158
- Dual PET imaging in bronchial neuroendocrine neoplasms: the NETPET score as a prognostic biomarker.J. Nucl. Med. 2021; 62: 1278-1284
- Phase 3 trial of (177)Lu-dotatate for midgut neuroendocrine tumors.N. Engl. J. Med. 2017; 376: 125-135
J.R. Strosberg, M.E. Caplin, P.L. Kunz, P.B. Ruszniewski, L. Bodei, A.E. Hendifar, E. Mittra, E.M. Wolin, J.C. Yao, M.E. Pavel, E. Grande, E.V. Cutsem, E. Seregni, H. Duarte, G. Gericke, A. Bartalotta, A. Demange, S. Mutevelic, E. Krenning, o.b.o.t.N.-s. group, Final overall survival in the phase 3 NETTER-1 study of lutetium-177-DOTATATE in patients with midgut neuroendocrine tumors, Journal of Clinical Oncology 39(15_suppl) (2021) 4112–4112.
- Carcinoid crisis: a misunderstood and unrecognized oncological emergency.Cancers (Basel). 2022; 14
- Prevention and management of carcinoid crises in patients with high-risk neuroendocrine tumours undergoing peptide receptor radionuclide therapy (PRRT): literature review and case series from two Australian tertiary medical institutions.Cancer Treat. Rev. 2018; 66: 1-6
- NANETS/SNMMI procedure standard for somatostatin receptor-based peptide receptor radionuclide therapy with (177)Lu-DOTATATE.J. Nucl. Med. 2019; 60: 937-943
- The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours.Eur. J. Nucl. Med Mol. Imaging. 2013; 40: 800-816
- 177Lu-DOTATATE peptide receptor radionuclide therapy versus Everolimus in advanced pancreatic neuroendocrine tumors: a systematic review and meta-analysis.Nucl. Med. Commun. 2019; 40: 1195-1203
- The therapeutic efficacy of 177Lu-DOTATATE/DOTATOC in advanced neuroendocrine tumors: A meta-analysis.Med. (Baltim.). 2020; 99e19304
- Peptide receptor radionuclide therapy for patients with advanced pancreatic neuroendocrine tumors.Semin Oncol. 2018; 45: 236-248
- Impact of liver tumour burden, alkaline phosphatase elevation, and target lesion size on treatment outcomes with (177)Lu-Dotatate: an analysis of the NETTER-1 study.Eur. J. Nucl. Med Mol. Imaging. 2020; 47: 2372-2382
- Localisation and mechanism of renal retention of radiolabelled somatostatin analogues.Eur. J. Nucl. Med. Mol. Imaging. 2005; 32: 1136-1143
- Amino acid infusion blocks renal tubular uptake of an indium-labelled somatostatin analogue.Br. J. Cancer. 1993; 67: 1437-1439
- Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues.Eur. J. Nucl. Med Mol. Imaging. 2010; 37: 1018-1031
- Prospective observational study of (177)Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity.Eur. J. Nucl. Med. Mol. Imaging. 2018; 45: 970-988
- The North American neuroendocrine tumor society consensus guidelines for surveillance and medical management of pancreatic neuroendocrine tumors.Pancreas. 2020; 49: 863-881
- Risk of bowel obstruction in patients with mesenteric or peritoneal disease receiving peptide receptor radionuclide therapy.J. Nucl. Med. 2021; 62: 69-72
N. Pavlakis, D.T. Ransom, D. Wyld, K.M. Sjoquist, R. Asher, V. Gebski, K. Wilson, A.D. Kiberu, M.E. Burge, W. Macdonald, P. Roach, D.A. Pattison, P. Butler, T.J. Price, M. Michael, B.J. Lawrence, D.L. Bailey, S. Leyden, J.R. Zalcberg, J.H. Turner, Australasian Gastrointestinal Trials Group (AGITG) CONTROL NET Study: Phase II study evaluating the activity of 177Lu-Octreotate peptide receptor radionuclide therapy (LuTate PRRT) and capecitabine, temozolomide CAPTEM)—First results for pancreas and updated midgut neuroendocrine tumors (pNETS, mNETS), Journal of Clinical Oncology 38(15_suppl) (2020) 4608–4608.
- Controversies in the treatment of digestive neuroendocrine tumors.J. Cancer Metasta Treat. 2016; 2: 304-309
- Neoadjuvant peptide receptor radionuclide therapy for an inoperable neuroendocrine pancreatic tumor.World J. Gastroenterol. 2009; 15: 5867-5870
- Controversies, Consensus, and Collaboration in the Use of (131)I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association.Thyroid. 2019; 29: 461-470
- Clinical review 170: A systematic review and metaanalysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer.J. Clin. Endocrinol. Metab. 2004; 89: 3668-3676
- European thyroid association guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer.Eur. Thyroid J. 2019; 8: 227-245
- American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer.Thyroid 26(1) (2016). 2015;
N. American Thyroid Association Guidelines Taskforce on Thyroid, C. Differentiated Thyroid, D.S. Cooper, G.M. Doherty, B.R. Haugen, R.T. Kloos, S.L. Lee, S.J. Mandel, E.L. Mazzaferri, B. McIver, F. Pacini, M. Schlumberger, S.I. Sherman, D.L. Steward, R.M. Tuttle, Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer, Thyroid 19(11) (2009) 1167–214.
- Guidelines for radioiodine therapy of differentiated thyroid cancer.Eur. J. Nucl. Med. Mol. Imaging. 2008; 35: 1941-1959
- First clinical experience and initial outcomes of 177Lu-DOTAGA.(SA.FAPi)2 therapy in patients with end-stage radioiodine-refractory differentiated thyroid cancer: a salvage treatment option.J. Nucl. Med. 2021; 62 (1701-1701)
- 68)Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with (177)Lu-PSMA-617.EJNMMI Res. 2020; 10: 18
- First experiences with (177)Lu-PSMA-617 therapy for recurrent or metastatic salivary gland cancer.EJNMMI Res. 2021; 11: 126
- Comprehensive evaluation of prostate specific membrane antigen expression in the vasculature of renal tumors: implications for imaging studies and prognostic role.J. Urol. 2018; 199: 370-377
- Radiation lobectomy: an overview of concept and applications, technical considerations, outcomes.Semin Interv. Radiol. 2021; 38: 419-424
- Transarterial radioembolization versus systemic treatment for hepatocellular carcinoma with macrovascular invasion: analysis of the u.s. national cancer database.J. Nucl. Med. 2022; 63: 57-58
- Position 2: transarterial radioembolization should be the primary locoregional therapy for unresectable hepatocellular carcinoma.Clin. Liver Dis. (Hoboken). 2020; 15: 74-76
A.S. Kennedy, W.A. Dezarn, P. McNeillie, B. Sangro, Dosimetry and Dose Calculation, in: J.I. Bilbao, M.F. Reiser (Eds.), Liver Radioembolization with 90Y Microspheres, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 53–61.
- Administered activity and outcomes of glass versus resin (90)Y microsphere radioembolization in patients with colorectal liver metastases.J. Gastrointest. Oncol. 2016; 7: 530-539
- Lung shunt fraction calculation using (99m)Tc-MAA SPECT/CT imaging for (90)Y microsphere selective internal radiation therapy of liver tumors.EJNMMI Res. 2021; 11: 96
- Reassessment of the lung dose limits for radioembolization.Nucl. Med. Commun. 2021; 42: 1064-1075
- Selective internal radiation therapy with SIR-Spheres in hepatocellular carcinoma and cholangiocarcinoma.J. Gastrointest. Oncol. 2017; 8: 266-278
J. Arbizu, M. Rodriguez-Fraile, J.M. Martí-Climent, I. Domínguez-Prado, C. Vigil, Nuclear Medicine Procedures for Treatment Evaluation and Administration, in: J.I. Bilbao, M.F. Reiser (Eds.), Liver Radioembolization with 90Y Microspheres, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 63–75.
- 90Y microsphere therapy: does 90Y PET/CT imaging obviate the need for 90Y Bremsstrahlung SPECT/CT imaging?.Nucl. Med. Commun. 2013; 34: 1090-1096
- Radioembolization of hepatic tumors.J. Gastrointest. Oncol. 2014; 5: 178-189
- Recognizing and managing adverse events in Y-90 radioembolization.Semin Interv. Radio. 2021; 38: 453-459
- Society of locoregional therapies in, Multi-centre phase II clinical trial of yttrium-90 resin microspheres alone in unresectable, chemotherapy refractory colorectal liver metastases.Br. J. Cancer. 2010; 103: 324-331
- Radioembolization of colorectal hepatic metastases using Yttrium-90 microspheres.Cancer. 2009; 115: 1849-1858
- The various therapeutic applications of the medical isotope holmium-166: a narrative review.EJNMMI Radio. Chem. 2019; 4: 19
- Transarterial radioembolization (TARE) with (131) iodine-lipiodol for unresectable primary hepatocellular carcinoma: experience from a tertiary care center in India.South Asian J. Cancer. 2021; 10: 81-86
- Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives.Front. Med. (Lausanne). 2019; 14: 132
- Atezolizumab-bevacizumab plus Y-90 TARE for the treatment of hepatocellular carcinoma: preclinical rationale and ongoing clinical trials.Expert Opin. Invest. Drugs. 2022; 31: 361-369
- Combining transarterial radioembolization (TARE) and CT-guided high-dose-rate interstitial brachytherapy (CT-HDRBT): a retrospective analysis of advanced primary and secondary liver tumor treatment.Cancers (Basel). 2021; 14
- Radioimmunotherapy of B-cell non-Hodgkin's lymphoma.Eur. J. Nucl. Med. 2001; 28: 1725-1735
- Theranostic applications of antibodies in oncology.Mol. Oncol. 2014; 8: 799-812
- IDEC Pharmaceuticals Corporation. Zevalin (Ibritumomab Tiuxetan) Injection. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/125019_0000_ZevalinTOC.cfm. Revised December 2005. Accessed June 28, 2022.
- Pfizer Corixa Corporation. Bexxar (Tositumomab, Iodine I 131 Tositumomab) Injection. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/125011s000TOC.cfm. Creaed June 2009. Accessed June 28, 2022.
- Multicenter phase II clinical study of iodine-131-rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin's lymphoma.J. Clin. Oncol. 2006; 24: 4418-4425
- Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma.J. Clin. Oncol. 2002; 20: 2453-2463
- Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin's lymphoma.J. Clin. Oncol. 2002; 20: 3262-3269
- Radioisotopic localization of (90)Yttrium-ibritumomab tiuxetan in patients with CD20+ non-Hodgkin's lymphoma.Mol. Imaging Biol. 2009; 11: 39-45
- First report on a prospective trial with yttrium-90-labeled ibritumomab tiuxetan (Zevalin) in primary CNS lymphoma.Neuro Oncol. 2009; 11: 423-429
- Phase III randomized intergroup trial of CHOP plus rituximab compared with CHOP chemotherapy plus (131)iodine-tositumomab for previously untreated follicular non-Hodgkin lymphoma: SWOG S0016.J. Clin. Oncol. 2013; 31: 314-320
- Repeated radioimmunotherapy with 131I-rituximab for patients with low-grade and aggressive relapsed or refractory B cell non-Hodgkin lymphoma.Cancer Chemother. Pharm. 2013; 71: 945-953
- Phase 1/2 study of fractionated (131)I-rituximab in low-grade B-cell lymphoma: the effect of prior rituximab dosing and tumor burden on subsequent radioimmunotherapy.Blood. 2009; 113: 1412-1421
- Radioimmunotherapy with 177Lu-DOTA-rituximab: final results of a phase I/II Study in 31 patients with relapsing follicular, mantle cell, and other indolent B-cell lymphomas.J. Nucl. Med. 2013; 54: 1045-1052
- Biodistribution of 89Zr-ofatumumab and 177Lu-ofatumumab as a theranostic pair for Lymphoma.J. Nucl. Med. 2021; 62 (1500-1500)
- Immuno-PET imaging of CD30-positive Lymphoma Using 89Zr-Desferrioxamine-labeled CD30-specific AC-10 antibody.J. Nucl. Med. 2016; 57: 96-102
- CD38-targeted theranostics of lymphoma with (89)Zr/(177)Lu-labeled daratumumab.Adv. Sci. (Weinh. ). 2021; 8: 2001879
- Comparison of incidence and outcomes of neuroblastoma in children, adolescents, and adults in the united states: a surveillance, epidemiology, and end results (SEER) program population study.Med Sci. Monit. 2020; 26e927218
- Radioiodinated metaiodobenzylguanidine (MIBG): radiochemistry, biology, and pharmacology.Semin Nucl. Med. 2011; 41: 324-333
- Metastatic neuroblastoma in children older than one year: prognostic significance of the initial metaiodobenzylguanidine scan and proposal for a scoring system.Cancer. 1996; 77: 805-811
- Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: results of the Cologne interscore comparison study.J. Clin. Oncol. 2013; 31: 944-951
- Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force.Br. J. Cancer. 2010; 102: 1319-1326
- MIBG therapy for neuroblastoma: precision achieved with dosimetry, and concern for false responders.Front Med (Lausanne). 2020; 28: 173
- EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy.Eur. J. Nucl. Med Mol. Imaging. 2008; 35: 1039-1047
- Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma.J. Clin. Oncol. 2007; 25: 1054-1060
- Phase I dose escalation of 131I-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma.J. Clin. Oncol. 1998; 16: 229-236
- Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age.Eur. J. Cancer. 2008; 44: 551-556
- 131I-MIBG followed by consolidation with busulfan, melphalan and autologous stem cell transplantation for refractory neuroblastoma.Pedia Blood Cancer. 2013; 60: 879-884
- 131I-metaiodobenzylguanidine with intensive chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma. A new approaches to neuroblastoma therapy (NANT) phase II study.Biol. Blood Marrow Transpl. 2015; 21: 673-681
- Long-term follow-up of the thyroid gland after treatment with 131I-Metaiodobenzylguanidine in children with neuroblastoma: importance of continuous surveillance.Pedia Blood Cancer. 2013; 60: 1833-1838
- Incidence and risk factors for secondary malignancy in patients with neuroblastoma after treatment with (131)I-metaiodobenzylguanidine.Eur. J. Cancer. 2016; 66: 144-152
- The North American neuroendocrine tumor society consensus guidelines for surveillance and management of metastatic and/or unresectable pheochromocytoma and paraganglioma.Pancreas. 2021; 50: 469-493
- Somatostatin receptor expression in Merkel cell carcinoma as target for molecular imaging.BMC Cancer. 2014; 14: 268
- Favorable response of metastatic merkel cell carcinoma to targeted 177Lu-DOTATATE therapy: will PRRT evolve to become an important approach in receptor-positive cases?.J. Nucl. Med. Technol. 2016; 44: 85-87
- Intratumoral treatment with radioactive beta-emitting microparticles: a systematic review.J. Radiat. Oncol. 2017; 6: 323-341
J. Elgqvist, S. Lindegren, P. Albertsson, Intraperitoneal Radionuclide Therapy – Clinical and Pre-Clinical Considerations, 2012.
- Biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers.J. Nucl. Med. 2019; : 386-392
- Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using (177)Lu-FAP-2286: first-in-humans results.J. Nucl. Med. 2022; 63: 415-423
- Feasibility and therapeutic potential of 177Lu-fibroblast activation protein inhibitor-46 for patients with relapsed or refractory cancers: a preliminary study.Clin. Nucl. Med. 2021; 46: e523-e530
- Radionuclide synovectomy - essentials for rheumatologists.Reumatologia. 2016; 54: 108-116
- Overlooked potential of positrons in cancer therapy.Sci. Rep. 2021; 11: 2475
- Auger electrons for cancer therapy - a review.EJNMMI Radio. Chem. 2019; 4: 27
- Lutetium-177-PSMA-I&T as metastases directed therapy in oligometastatic hormone sensitive prostate cancer, a randomized controlled trial.BMC Cancer. 2020; 20: 884
- Preclinical evaluation of AMG 160, a next-generation bispecific T cell engager (BiTE) targeting the prostate-specific membrane antigen PSMA for metastatic castration-resistant prostate cancer (mCRPC).J. Clin. Oncol. 2019; 37 (301-301)
- Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting Bispecific T Cell Engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC).J. Clin. Oncol. 2019; 37 (5034-5034)
- Treatment of neuroblastoma with [131I]metaiodobenzylguanidine: long-term results in 25 patients.J. Nucl. Biol. Med. 1991; 35 (1991): 216-219
- Optimal usage of radium-223 in metastatic castration-resistant prostate cancer.J. Formos. Med. Assoc. 2017; 116: 825-836
- Radionuclide Synovectomy: Treatment of Inflammation of the Synovial Joints. Radiopharmaceuticals for therapy.Springer, New Delhi, India2016: 265-278
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy