Abstract
Keywords
1. Introduction
- Mack T.M.
- Ray S.D.
- Yang N.
- Pandey S.
- Bello N.T.
- Gray Y.J.P.
- Auvinen A.
- Hakama Y.M.
- Huang R.
- Boltze J.
- Li Y.S.
- Moon S.-J.
- Ginat D.T.
- Tubbs R.S.
- Moisi Y.M.D.
- Sontheimer H.
- Reynoso-Noverón N.
- Mohar-Betancourt A.
- Ortiz-Rafael Y.J.
- Bi W.L.
- et al.
- Pauli R.
- Wilson Y.M.
- Bi W.L.
- et al.
- Nazir M.
- Shakil S.
- Khurshid Y.K.
- Serte S.
- Serener A.
- Al‐Turjman Y.F.
- Dong S.
- Wang P.
- Abbas Y.K.
- Zhang X.
- Smith N.
- Webb Y.A.
- Deepa G.
- Mary G.L.R.
- Karthikeyan A.
- Rajalakshmi P.
- Hemavathi K.
- Dharanisri Y.M.
- Islam M.K.
- Ali M.S.
- Miah M.S.
- Rahman M.M.
- Alam M.S.
- Hossain Y.M.A.
- Bhagat N.
- Kaur Y.G.
- Chandra Joshi R.
- Mishra R.
- Gandhi P.
- Pathak V.K.
- Burget R.
- Dutta Y.M.K.
- Sathies Kumar T.
- Arun C.
- Ezhumalai Y.P.
- Takao H.
- Amemiya S.
- Kato S.
- Yamashita H.
- Sakamoto N.
- Abe Y.O.
- Xiao Y.
- Wu J.
- Lin Y.Z.
- Song G.
- Shan T.
- Bao M.
- Liu Y.
- Zhao Y.
- Chen Y.B.
- Ait Skourt B.
- El Hassani A.
- Majda Y.A.
- Cheng J.
- Ahuja S.
- Panigrahi B.K.
- Gandhi Y.T.K.
- Tandel G.S.
- Tiwari A.
- Kakde Y.O.G.
- Waring J.
- Lindvall C.
- Umeton Y.R.
- •We developed a new architecture based on attention models, like the Transformer network, which we call Cross-Transformer.
- •An overview of artificial intelligence systems in detection and classification was performed.
- •Seven novel deep-learning networks were compared for brain tumor classification.
- •Seven novel deep-learning networks were compared for brain tumor detection. Additionally, an influence assessment of data augmentation and learning transfer has been carried out.
- •The experiment was repeated for all seven novel networks. Nevertheless, the three most common acquisition sequences comparative analysis was performed. Moreover, we included the novel architecture we named Cross-Transformer, together with the seven networks.
2. Materials and methods
2.1 Dataset
Dataset | Subjects | Sequences | Slices | Classes | Images per class |
---|---|---|---|---|---|
BTD | 233 | T1-Gd | Axial, coronal and sagittal | Meningioma | 708 |
Glioma | 1426 | ||||
Pituitary | 930 | ||||
MRI-D | 253 | T1WI | Axial | Tumors | 155 |
Not tumors | 98 | ||||
TCGA-LGG | 110 | T1W1, T1-Gd, FLAIR | Axial | Tumors | 1373 |
Not tumors | 2556 |

2.2 Performance evaluation metrics
Metric | Equation | |
---|---|---|
Accuracy [44] | (1) | |
F1 score [45] | (2) | |
Sensitivity or Recall 45 , 46 | (3) | |
Specificity 44 , 46 | (4) | |
Precision [45] | (5) |
2.3 Experimental design
- •Loss function: Categorical cross-entropy.
- •Optimizer: Adadelta.
- •Epochs: 50
- •Validation: 10 k-folds cross-validation.
- •Number of repeated runs per fold: 3
- •Batch size: 4
- •Initialization of weights: Uniform Glorot.
- •Bias initialization: Zeros.
3. Results
3.1 Tumor classification – BTD dataset
Network | F1_score | Accuracy | Sensitivity | Specificity | Precision |
---|---|---|---|---|---|
InceptionResNetV2 | 95,39 | 97,22 | 96,17 | 98,15 | 97,67 |
InceptionV3 | 94,85 | 96,89 | 97,81 | 97,43 | 94,80 |
DenseNet121 | 94,82 | 96,89 | 96,72 | 97,66 | 96,55 |
Xception | 94,59 | 96,73 | 96,72 | 97,87 | 94,14 |
ResNet50V2 | 93,11 | 95,91 | 96,17 | 98,72 | 93,89 |
VGG19 | 74,04 | 76,76 | 82,17 | 100,00 | 89,29 |
EfficientNetB7 | 68,50 | 76,92 | 96,15 | 100,00 | 100,00 |
Class | F1_score | Accuracy | Sensitivity | Specificity | Precision |
---|---|---|---|---|---|
Pituitary | 95,39 | 97,22 | 97,81, 8 | 100,00 | 100,00 |
Glioma | 93,59 | 93,94 | 96,15 | 100,00 | 97,67 |
Meningioma | 82,71 | 92,14 | 85,92 | 100,00 | 100,00 |
p-value | ||||||||
---|---|---|---|---|---|---|---|---|
Networks | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
InceptionResNetV2 | 1 | 1,00 | 0,00 | 0,77 | 0,01 | 0,00 | 0,00 | 0,00 |
InceptionV3 | 2 | 0,00 | 1,00 | 0,00 | 0,00 | 0,19 | 0,00 | 0,00 |
DenseNet121 | 3 | 0,77 | 0,00 | 1,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Xception | 4 | 0,01 | 0,00 | 0,00 | 1,00 | 0,00 | 0,00 | 0,00 |
ResNet50V2 | 5 | 0,00 | 0,19 | 0,00 | 0,00 | 1,00 | 0,00 | 0,00 |
VGG19 | 6 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 1,00 | 0,11 |
EfficientNetB7 | 7 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,11 | 1,00 |


3.2 Tumor detection – MRI-D dataset
Methods | Metric | Inception ResNetV2 | InceptionV3 | Xception | ResNet50V2 | DenseNet121 | VGG19 | Efficient NetB7 |
---|---|---|---|---|---|---|---|---|
T&D | F1_score | 90,32 | 90,32 | 89,23 | 92,06 | 93,33 | 93,75 | 91,80 |
D | 89,55 | 87,50 | 89,55 | 84,51 | 85,29 | 75,61 | 76,54 | |
T | 90,32 | 93,55 | 88,57 | 87,50 | 89,23 | 91,80 | 85,25 | |
N | 86,96 | 84,06 | 87,32 | 87,32 | 84,06 | 75,61 | 76,54 | |
T&D | Accuracy | 88,24 | 88,24 | 86,27 | 90,20 | 92,16 | 92,16 | 90,20 |
D | 86,27 | 84,31 | 86,27 | 78,43 | 80,39 | 60,78 | 62,75 | |
T | 88,24 | 92,16 | 84,31 | 84,31 | 86,27 | 90,20 | 82,35 | |
N | 82,35 | 80,39 | 82,35 | 82,35 | 78,43 | 60,78 | 62,75 |

Method | Class | F1_score | Accuracy |
---|---|---|---|
Transfer learning & Data augmentation | Tumor | 93,75 | 92,16 |
Not tumor | 90,48 | 92,16 | |
Data augmentation | Tumor | 89,55 | 86,27 |
Not tumor | 81,08 | 86,27 | |
Transfer learning | Tumor | 93,55 | 92,16 |
Not tumor | 90,00 | 92,16 | |
None | Tumor | 87,32 | 82,35 |
Not tumor | 76,19 | 82,35 |
p-value - (Comparison with the scores of all training sessions) | ||||||||
---|---|---|---|---|---|---|---|---|
Network | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
InceptionResNetV2 | 1 | 1,00 | 0,02 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
InceptionV3 | 2 | 0,02 | 1,00 | 0,51 | 0,29 | 0,01 | 0,00 | 0,00 |
Xception | 3 | 0,00 | 0,51 | 1,00 | 0,61 | 0,02 | 0,01 | 0,00 |
ResNet50V2 | 4 | 0,00 | 0,29 | 0,61 | 1,00 | 0,10 | 0,01 | 0,00 |
DenseNet121 | 5 | 0,00 | 0,01 | 0,02 | 0,10 | 1,00 | 0,17 | 0,01 |
VGG19 | 6 | 0,00 | 0,00 | 0,01 | 0,01 | 0,17 | 1,00 | 0,17 |
EfficientNetB7 | 7 | 0,00 | 0,00 | 0,00 | 0,00 | 0,01 | 0,17 | 1,00 |
p-value | ||||||
---|---|---|---|---|---|---|
Statistician evaluated between: | T & D | T & D | T & D | D | D | T |
T | D | N | T | N | N | |
InceptionResNetV2 | 0,00 | 0,00 | 0,00 | 0,68 | 0,00 | 0,01 |
InceptionV3 | 0,21 | 0,00 | 0,00 | 0,00 | 0,02 | 0,00 |
Xception | 0,00 | 0,19 | 0,00 | 0,03 | 0,01 | 0,93 |
ResNet50V2 | 0,00 | 0,00 | 0,00 | 0,17 | 0,08 | 0,97 |
DenseNet121 | 0,00 | 0,00 | 0,00 | 0,89 | 0,04 | 0,09 |
VGG19 | 0,03 | 0,00 | 0,00 | 0,00 | 1,00 | 0,00 |
EfficientNetB7 | 0,00 | 0,00 | 0,00 | 0,00 | 0,89 | 0,00 |


3.3 Tumor detection – TCGA-LGG dataset
Sequences | Metric | Inception ResNetV2 | Cross- Transformer | Xception | DenseNet121 | InceptionV3 | ResNet50V2 | Efficient NetB7 | VGG19 |
---|---|---|---|---|---|---|---|---|---|
T1WI | F1_score | 89,72 | 82,89 | 89,30 | 87,94 | 86,14 | 86,35 | 79,63 | 79,69 |
FLAIR | 93,45 | 84,76 | 91,95 | 91,99 | 88,85 | 87,29 | 80,13 | 79,44 | |
T1-Gd | 89,42 | 82,84 | 88,45 | 86,83 | 84,80 | 85,85 | 79,26 | 78,83 | |
T1WI | Accuracy | 86,53 | 88,06 | 85,90 | 84,88 | 82,21 | 81,83 | 71,03 | 70,65 |
FLAIR | 91,36 | 89,58 | 89,33 | 89,20 | 84,63 | 83,61 | 70,01 | 68,36 | |
T1-Gd | 85,90 | 88,31 | 85,13 | 83,35 | 80,81 | 81,07 | 68,74 | 65,06 |
Method | Class | F1_score | Accuracy |
---|---|---|---|
T1WI | Tumor | 81,46 | 86,53 |
Not tumor | 89,72 | 88,06 | |
FLAIR | Tumor | 87,31 | 91,36 |
Not tumor | 93,45 | 91,36 | |
T1-Gd | Tumor | 79,93 | 85,90 |
Not tumor | 89,42 | 88,31 |
p-value - (Data of all sequences) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Network | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
InceptionResNetV2 | 1 | 1,00 | 0,00 | 0,07 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
Cross-Transformer | 2 | 0,00 | 1,00 | 0,00 | 0,00 | 0,52 | 0,79 | 0,00 | 0,00 |
Xception | 3 | 0,07 | 0,00 | 1,00 | 0,06 | 0,00 | 0,00 | 0,00 | 0,00 |
DenseNet121 | 4 | 0,00 | 0,00 | 0,06 | 1,00 | 0,00 | 0,00 | 0,00 | 0,00 |
InceptionV3 | 5 | 0,00 | 0,52 | 0,00 | 0,00 | 1,00 | 0,09 | 0,00 | 0,00 |
ResNet50V2 | 6 | 0,00 | 0,79 | 0,00 | 0,00 | 0,09 | 1,00 | 0,00 | 0,00 |
EfficientNetB7 | 7 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 1,00 | 0,01 |
VGG19 | 8 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,01 | 1,00 |
p-value (Sequences) | |||
---|---|---|---|
Statistician evaluated between: | FLAIR | FLAIR | T1WI |
T1WI | T1-Gd | T1-Gd | |
InceptionResNetV2 | 0,00 | 0,00 | 0,04 |
Cross-Transformer | 0,00 | 0,00 | 0,67 |
Xception | 0,00 | 0,00 | 0,25 |
DenseNet121 | 0,00 | 0,00 | 0,04 |
InceptionV3 | 0,00 | 0,00 | 0,13 |
ResNet50V2 | 0,03 | 0,00 | 0,35 |
EfficientNetB7 | 0,94 | 0,22 | 0,24 |
VGG19 | 0,17 | 0,60 | 0,07 |




p-value - (Times) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Network | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Cross-Transformer | 1 | 1,00 | 0,04 | 0,02 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
ResNet50V2 | 2 | 0,04 | 1,00 | 0,09 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
InceptionV3 | 3 | 0,02 | 0,09 | 1,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 |
VGG19 | 4 | 0,00 | 0,00 | 0,00 | 1,00 | 0,00 | 0,00 | 0,00 | 0,01 |
DenseNet121 | 5 | 0,00 | 0,00 | 0,00 | 0,00 | 1,00 | 0,06 | 0,00 | 0,00 |
Xception | 6 | 0,00 | 0,00 | 0,00 | 0,00 | 0,06 | 1,00 | 0,07 | 0,00 |
InceptionResNetV2 | 7 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,07 | 1,00 | 0,00 |
EfficientNetB7 | 8 | 0,00 | 0,00 | 0,00 | 0,01 | 0,00 | 0,00 | 0,00 | 1,00 |
4. Discussion
5. Conclusion
Funding statement
CRediT authorship contribution statement
Declaration of Competing Interest
Acknowledgement
Appendix
A Hyperparameters
- Belyadi H.
- Haghighat Y.A.
- Wang Q.
- Ma Y.
- Zhao K.
- Tian Y.Y.
B Glossary
Appendix C. Supplementary material
Supplementary material
Supplementary material
Supplementary material
Supplementary material
Supplementary material
References
- American Cancer Society, Cancer Facts & Figures 2020, 1–76, 2020.
- Cancer, https://www.who.int/en/news-room/fact-sheets/detail/cancer (accedido 17 de noviembre de 2020).
- What a cancer is.Cancers in the Urban Environment. Elsevier, 2021: 5-8https://doi.org/10.1016/B978-0-12-811745-3.00003-3
- Apoptosis.en Reference Module in Biomedical Sciences. Elsevier, 2019https://doi.org/10.1016/B978-0-12-801238-3.62145-1
- Introduction to Neoplasia.Comprehensive Toxicology. Elsevier, 2018: 1-10https://doi.org/10.1016/B978-0-12-801238-3.02217-0
- Tumor progression and metastasis.Carcinogenesis. 2000; vol. 21: 497-503https://doi.org/10.1093/carcin/21.3.497
- Decision making in patients with pulmonary nodules.Am. J. Respir. Crit. Care Med. 2012; 185: 363-372https://doi.org/10.1164/rccm.201104-0679CI
- Cancer screening: theory and applications.International Encyclopedia of Public Health. Elsevier, 2017: 389-405https://doi.org/10.1016/B978-0-12-803678-5.00050-3
- Strategies for improved intra-arterial treatments targeting brain tumors: a systematic review.Front. Oncol. 2020; 10https://doi.org/10.3389/fonc.2020.01443
- Tumors of the brain.en Central Nervous System Cancer Rehabilitation. Elsevier, 2019: 27-34https://doi.org/10.1016/B978-0-323-54829-8.00004-4
- Brain tumors.en Diseases of the Nervous System. Elsevier, 2021: 207-233https://doi.org/10.1016/B978-0-12-821228-8.00009-3
- Epidemiology of brain tumor.Pinciples of Neuro-Oncology. Springer International Publishing, Cham2021: 15-25https://doi.org/10.1007/978-3-030-54879-7_2
- Cancer health concerns.Reference Module in Food Science. Elsevier, 2018https://doi.org/10.1016/B978-0-08-100596-5.22577-8
- Artificial intelligence and cancer.Nat. Cancer. 2020; 1: 149-152https://doi.org/10.1038/s43018-020-0034-6
- Artificial intelligence in cancer imaging: Clinical challenges and applications.CA Cancer J. Clin. 2019; caac.21552https://doi.org/10.3322/caac.21552
- Artificial intelligence in radiology.Nat. Rev. Cancer. 2018; 18: 500-510https://doi.org/10.1038/s41568-018-0016-5
- A comprehensive review on multi-organs tumor detection based on machine learning.Pattern Recognit. Lett. 2020; 131: 30-37https://doi.org/10.1016/j.patrec.2019.12.006
- Brain structural disorders detection and classification approaches: a review.Artif. Intell. Rev. 2020; 53: 3349-3401https://doi.org/10.1007/s10462-019-09766-9
- The basic principles of magnetic resonance imaging.Encyclopedia of Behavioral Neuroscience. second ed. Elsevier, 2022: 105-113https://doi.org/10.1016/B978-0-12-819641-0.00108-0
- Diverse applications of artificial intelligence in neuroradiology.Neuroimaging Clin. N. Am. 2020; 30: 505-516https://doi.org/10.1016/j.nic.2020.07.003
- Role of deep learning in brain tumor detection and classification (2015 to 2020): A review.Comput. Med. Imaging Graph. 2021; 91101940https://doi.org/10.1016/j.compmedimag.2021.101940
- Review of MRI-based brain tumor image segmentation using deep learning methods.Procedia Comput. Sci. 2016; 102: 317-324https://doi.org/10.1016/j.procs.2016.09.407
- Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis.Npj Digit. Med. 2021; 4: 65https://doi.org/10.1038/s41746-021-00438-z
- Deep learning in medical imaging: a brief review.Trans. Emerg. Telecommun. Technol. 2020; https://doi.org/10.1002/ett.4080
- Delving deep into rectifiers: surpassing human-level performance on imagenet classification.Proc. IEEE Int. Conf. Comput. Vis. 2015; 2015: 1026-1034https://doi.org/10.1109/ICCV.2015.123
- Deep learning in neural networks: an overview.Neural Netw. 2015; 61: 85-117https://doi.org/10.1016/j.neunet.2014.09.003
- Deep learning for health informatics.IEEE J. Biomed. Health Inform. 2017; 21: 4-21https://doi.org/10.1109/JBHI.2016.2636665
- A survey of deep neural network architectures and their applications.Neurocomputing. 2017; 234: 11-26https://doi.org/10.1016/j.neucom.2016.12.038
- A survey on deep learning and its applications.Comput. Sci. Rev. 2021; 40100379https://doi.org/10.1016/j.cosrev.2021.100379
- Medical imaging.Biomedical Information Technology. Elsevier, 2020: 3-49https://doi.org/10.1016/B978-0-12-816034-3.00001-8
- Detection of brain tumor using modified particle swarm optimization (MPSO) segmentation via haralick features extraction and subsequent classification by KNN algorithm.Mater. Today Proc. 2021; https://doi.org/10.1016/j.matpr.2021.10.475
- Brain tumor detection in MR image using superpixels, principal component analysis and template based K-means clustering algorithm.Mach. Learn. Appl. 2021; 5100044https://doi.org/10.1016/j.mlwa.2021.100044
- MRI brain tumor image classification with support vector machine.Mater. Today Proc.. 2021; https://doi.org/10.1016/j.matpr.2021.11.368
- Ensemble based machine learning approach for prediction of glioma and multi-grade classification.Comput. Biol. Med. 2021; 137104829https://doi.org/10.1016/j.compbiomed.2021.104829
- An approach for brain tumor detection using optimal feature selection and optimized deep belief network.Biomed. Signal. Process. Control. 2022; 73103440https://doi.org/10.1016/j.bspc.2021.103440
- Deep-learning single-shot detector for automatic detection of brain metastases with the combined use of contrast-enhanced and non-enhanced computed tomography images.Eur. J. Radiol. 2021; 144110015https://doi.org/10.1016/j.ejrad.2021.110015
- Cancer diagnosis using generative adversarial networks based on deep learning from imbalanced data.Comput. Biol. Med. 2021; 135104540https://doi.org/10.1016/j.compbiomed.2021.104540
- Automatic brain tumour diagnostic method based on a back propagation neural network and an extended set-membership filter.Comput. Methods Prog. Biomed. 2021; 208106188https://doi.org/10.1016/j.cmpb.2021.106188
- Mixed-pooling-dropout for convolutional neural network regularization.J. King Saud. Univ. Comput. Inf. Sci. 2021; https://doi.org/10.1016/j.jksuci.2021.05.001
- Brain tumor dataset.Figshare. 2017; https://doi.org/10.6084/m9.figshare.1512427.v5
- Enhanced performance of Dark-Nets for brain tumor classification and segmentation using colormap-based superpixel techniques.Mach. Learn. Appl. 2022; 7100212https://doi.org/10.1016/j.mlwa.2021.100212
- Performance optimisation of deep learning models using majority voting algorithm for brain tumour classification.Comput. Biol. Med. 2021; 135104564https://doi.org/10.1016/j.compbiomed.2021.104564
- Automated machine learning: review of the state-of-the-art and opportunities for healthcare.Artif. Intell. Med. 2020; 104101822https://doi.org/10.1016/j.artmed.2020.101822
- Measures of diagnostic accuracy: basic definitions.EJIFCC. 2009; 19: 203-211
D.M.W. Powers, Evaluation: from Precision, Recall and F-measure to ROC, Informedness, Markedness and Correlation, oct. 2020.
- Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice.Front. Public Health. 2017; 5: 307https://doi.org/10.3389/fpubh.2017.00307
- Brain tumor classification for MR images using transfer learning and fine-tuning.Comput. Med. Imaging Graph. 2019; 75: 34-46https://doi.org/10.1016/j.compmedimag.2019.05.001
- Classification of type of brain magnetic resonance images with deep learning technique.Magn. Reson. Imaging. 2021; 77: 180-185https://doi.org/10.1016/j.mri.2020.12.017
M.D. Zeiler, ADADELTA: an Adaptive Learning Rate Method, dic. 2012.
M. Li, T. Zhang, Y. Chen, y A. J. Smola, Efficient mini-batch training for stochastic optimization, in: Proceedings of the Twentieth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Ago. 2014, 661–670. doi: 10.1145/2623330.2623612.
Yi-de Ma, Qing Liu, y Zhi-bai Quan, Automated image segmentation using improved PCNN model based on cross-entropy, in: Proceedings of the International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004., 2004, 743–746. doi: 10.1109/ISIMP.2004.1434171.
- Model evaluation.Mach. Learn. Guide Oil Gas. Using Python. 2021; : 349-380https://doi.org/10.1016/B978-0-12-821929-4.00009-3
- A Comprehensive Survey of Loss Functions in Machine Learning.Ann. Data Sci. 2020; https://doi.org/10.1007/s40745-020-00253-5
S. Ruder, An Overview of Gradient Descent Optimization Algorithms, Sep. 2016.
- Model evaluation.Data Sci. 2019; : 263-279https://doi.org/10.1016/B978-0-12-814761-0.00008-3
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy